{"title":"基于改进YOLOv5的猕猴桃准确识别","authors":"Sun Wei, Sun Yi Jun, Li Zhao Chen, Guo Jing","doi":"10.1109/icnlp58431.2023.00025","DOIUrl":null,"url":null,"abstract":"In order to meet the urgent needs of automation and intelligent picking of kiwifruit, aiming at the problems of unreasonable construction of kiwifruit data set, low fruit recognition accuracy and poor spatial positioning in the natural environment of orchard, a precise recognition and visual positioning method of kiwifruit based on improved Yolov5s was proposed. In view of the growth characteristics of kiwifruit in trellis orchards, a multi-type kiwifruit data set was first constructed. Furthermore, the attention mechanism and multi-scale module are combined to improve the Yolov5s network structure, identify kiwifruit and extract the center coordinates of the prediction box. The experimental results show that the average accuracy of the model for six kiwifruit types under different weather and light conditions is 98 %. The single image recognition time of $1280\\times 720$ pixel is about 13.8 ms, and the weight is only 15.21 Mb. It can be seen that this study can provide technical support for the vision system of kiwifruit automatic picking robot, and provide reference for the intelligent recognition and positioning of other fruits (such as apples, mangoes and oranges).","PeriodicalId":53637,"journal":{"name":"Icon","volume":"28 1","pages":"103-107"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Recognition of Kiwifruit Based on Improved YOLOv5\",\"authors\":\"Sun Wei, Sun Yi Jun, Li Zhao Chen, Guo Jing\",\"doi\":\"10.1109/icnlp58431.2023.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the urgent needs of automation and intelligent picking of kiwifruit, aiming at the problems of unreasonable construction of kiwifruit data set, low fruit recognition accuracy and poor spatial positioning in the natural environment of orchard, a precise recognition and visual positioning method of kiwifruit based on improved Yolov5s was proposed. In view of the growth characteristics of kiwifruit in trellis orchards, a multi-type kiwifruit data set was first constructed. Furthermore, the attention mechanism and multi-scale module are combined to improve the Yolov5s network structure, identify kiwifruit and extract the center coordinates of the prediction box. The experimental results show that the average accuracy of the model for six kiwifruit types under different weather and light conditions is 98 %. The single image recognition time of $1280\\\\times 720$ pixel is about 13.8 ms, and the weight is only 15.21 Mb. It can be seen that this study can provide technical support for the vision system of kiwifruit automatic picking robot, and provide reference for the intelligent recognition and positioning of other fruits (such as apples, mangoes and oranges).\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"28 1\",\"pages\":\"103-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icnlp58431.2023.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icnlp58431.2023.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
Accurate Recognition of Kiwifruit Based on Improved YOLOv5
In order to meet the urgent needs of automation and intelligent picking of kiwifruit, aiming at the problems of unreasonable construction of kiwifruit data set, low fruit recognition accuracy and poor spatial positioning in the natural environment of orchard, a precise recognition and visual positioning method of kiwifruit based on improved Yolov5s was proposed. In view of the growth characteristics of kiwifruit in trellis orchards, a multi-type kiwifruit data set was first constructed. Furthermore, the attention mechanism and multi-scale module are combined to improve the Yolov5s network structure, identify kiwifruit and extract the center coordinates of the prediction box. The experimental results show that the average accuracy of the model for six kiwifruit types under different weather and light conditions is 98 %. The single image recognition time of $1280\times 720$ pixel is about 13.8 ms, and the weight is only 15.21 Mb. It can be seen that this study can provide technical support for the vision system of kiwifruit automatic picking robot, and provide reference for the intelligent recognition and positioning of other fruits (such as apples, mangoes and oranges).