当人工智能调节在线内容:人类协作和互动透明度对用户信任的影响

Maria D. Molina, S. Sundar
{"title":"当人工智能调节在线内容:人类协作和互动透明度对用户信任的影响","authors":"Maria D. Molina, S. Sundar","doi":"10.1093/jcmc/zmac010","DOIUrl":null,"url":null,"abstract":"\n Given the scale of user-generated content online, the use of artificial intelligence (AI) to flag problematic posts is inevitable, but users do not trust such automated moderation of content. We explore if (a) involving human moderators in the curation process and (b) affording “interactive transparency,” wherein users participate in curation, can promote appropriate reliance on AI. We test this through a 3 (Source: AI, Human, Both) × 3 (Transparency: No Transparency, Transparency-Only, Interactive Transparency) × 2 (Classification Decision: Flagged, Not Flagged) between-subjects online experiment (N = 676) involving classification of hate speech and suicidal ideation. We discovered that users trust AI for the moderation of content just as much as humans, but it depends on the heuristic that is triggered when they are told AI is the source of moderation. We also found that allowing users to provide feedback to the algorithm enhances trust by increasing user agency.","PeriodicalId":14832,"journal":{"name":"J. Comput. Mediat. Commun.","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"When AI moderates online content: effects of human collaboration and interactive transparency on user trust\",\"authors\":\"Maria D. Molina, S. Sundar\",\"doi\":\"10.1093/jcmc/zmac010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Given the scale of user-generated content online, the use of artificial intelligence (AI) to flag problematic posts is inevitable, but users do not trust such automated moderation of content. We explore if (a) involving human moderators in the curation process and (b) affording “interactive transparency,” wherein users participate in curation, can promote appropriate reliance on AI. We test this through a 3 (Source: AI, Human, Both) × 3 (Transparency: No Transparency, Transparency-Only, Interactive Transparency) × 2 (Classification Decision: Flagged, Not Flagged) between-subjects online experiment (N = 676) involving classification of hate speech and suicidal ideation. We discovered that users trust AI for the moderation of content just as much as humans, but it depends on the heuristic that is triggered when they are told AI is the source of moderation. We also found that allowing users to provide feedback to the algorithm enhances trust by increasing user agency.\",\"PeriodicalId\":14832,\"journal\":{\"name\":\"J. Comput. Mediat. Commun.\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Mediat. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jcmc/zmac010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Mediat. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jcmc/zmac010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

考虑到在线用户生成内容的规模,使用人工智能(AI)来标记有问题的帖子是不可避免的,但用户并不相信这种自动内容审核。我们将探讨(a)在策展过程中涉及人类审查员和(b)提供“互动透明度”,用户参与策展,是否可以促进对人工智能的适当依赖。我们通过3(来源:AI, Human, Both) × 3(透明度:无透明度,只有透明度,互动透明度)× 2(分类决策:标记,未标记)的在线实验(N = 676)测试了这一点,涉及仇恨言论和自杀意念的分类。我们发现,用户信任AI对内容的审核,就像信任人类一样,但这取决于当他们被告知AI是审核来源时触发的启发式。我们还发现,允许用户向算法提供反馈可以通过增加用户代理来增强信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
When AI moderates online content: effects of human collaboration and interactive transparency on user trust
Given the scale of user-generated content online, the use of artificial intelligence (AI) to flag problematic posts is inevitable, but users do not trust such automated moderation of content. We explore if (a) involving human moderators in the curation process and (b) affording “interactive transparency,” wherein users participate in curation, can promote appropriate reliance on AI. We test this through a 3 (Source: AI, Human, Both) × 3 (Transparency: No Transparency, Transparency-Only, Interactive Transparency) × 2 (Classification Decision: Flagged, Not Flagged) between-subjects online experiment (N = 676) involving classification of hate speech and suicidal ideation. We discovered that users trust AI for the moderation of content just as much as humans, but it depends on the heuristic that is triggered when they are told AI is the source of moderation. We also found that allowing users to provide feedback to the algorithm enhances trust by increasing user agency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To intervene or not to intervene: young adults' views on when and how to intervene in online harassment Effect of Parasitic Patch for the Radiation Characteristics Microstrip Antenna Planar Array with Distribution Edge An Optimized Vertical Handover Decision Model for the Heterogeneous DSRC/LTE Vehicular Networks Performance Evaluation of Optical Amplifiers in a Hybrid RoF-WDM Communication System A Non-hierarchical Multipath Routing Protocol Using Fuzzy Logic for Optimal Network Lifetime in Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1