用于MEMS的新型低应力PECVD聚sige层

C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Lärmer, F. Fischer, S. Kronmüller, V. Leca, B. Otter
{"title":"用于MEMS的新型低应力PECVD聚sige层","authors":"C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Lärmer, F. Fischer, S. Kronmüller, V. Leca, B. Otter","doi":"10.1109/JMEMS.2003.820304","DOIUrl":null,"url":null,"abstract":"Thick poly-SiGe layers, deposited by plasma-enhanced chemical vapor deposition (PECVD), are very promising structural layers for use in microaccelerometers, microgyroscopes or for thin-film encapsulation, especially for applications where the thermal budget is limited. In this work it is shown for the first time that these layers are an attractive alternative to low-pressure CVD (LPCVD) poly-Si or poly-SiGe because of their high growth rate (100-200 nm/min) and low deposition temperature (520/spl deg/C-590/spl deg/C). The combination of both of these features is impossible to achieve with either LPCVD SiGe (2-30 nm/min growth rate) or LPCVD poly-Si (annealing temperature higher than 900/spl deg/C to achieve structural layer having low tensile stress). Additional advantages are that no nucleation layer is needed (deposition directly on SiO/sub 2/ is possible) and that the as-deposited layers are polycrystalline. No stress or dopant activation anneal of the structural layer is needed since in situ phosphorus doping gives an as-deposited tensile stress down to 20 MPa, and a resistivity of 10 m/spl Omega/-cm to 30 m/spl Omega/-cm. With in situ boron doping, resistivities down to 0.6 m/spl Omega/-cm are possible. The use of these films as an encapsulation layer above an accelerometer is shown.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"83 1","pages":"816-825"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"New low-stress PECVD poly-SiGe Layers for MEMS\",\"authors\":\"C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Lärmer, F. Fischer, S. Kronmüller, V. Leca, B. Otter\",\"doi\":\"10.1109/JMEMS.2003.820304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thick poly-SiGe layers, deposited by plasma-enhanced chemical vapor deposition (PECVD), are very promising structural layers for use in microaccelerometers, microgyroscopes or for thin-film encapsulation, especially for applications where the thermal budget is limited. In this work it is shown for the first time that these layers are an attractive alternative to low-pressure CVD (LPCVD) poly-Si or poly-SiGe because of their high growth rate (100-200 nm/min) and low deposition temperature (520/spl deg/C-590/spl deg/C). The combination of both of these features is impossible to achieve with either LPCVD SiGe (2-30 nm/min growth rate) or LPCVD poly-Si (annealing temperature higher than 900/spl deg/C to achieve structural layer having low tensile stress). Additional advantages are that no nucleation layer is needed (deposition directly on SiO/sub 2/ is possible) and that the as-deposited layers are polycrystalline. No stress or dopant activation anneal of the structural layer is needed since in situ phosphorus doping gives an as-deposited tensile stress down to 20 MPa, and a resistivity of 10 m/spl Omega/-cm to 30 m/spl Omega/-cm. With in situ boron doping, resistivities down to 0.6 m/spl Omega/-cm are possible. The use of these films as an encapsulation layer above an accelerometer is shown.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"83 1\",\"pages\":\"816-825\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

通过等离子体增强化学气相沉积(PECVD)沉积的厚聚sige层是非常有前途的结构层,可用于微加速度计,微陀螺仪或薄膜封装,特别是在热预算有限的应用中。在这项工作中,首次表明这些层是低压CVD (LPCVD)多晶硅或多晶硅的有吸引力的替代品,因为它们具有高生长速率(100-200 nm/min)和低沉积温度(520/spl°/C-590/spl°/C)。LPCVD SiGe (2- 30nm /min生长速率)或LPCVD多晶硅(退火温度高于900/spl度/C以获得具有低拉伸应力的结构层)都无法实现这两种特性的结合。其他优点是不需要成核层(直接沉积在SiO/sub 2/上是可能的),而且沉积层是多晶的。不需要对结构层进行应力或掺杂激活退火,因为原位磷掺杂使沉积时的拉伸应力降至20 MPa,电阻率为10 m/spl ω /-cm至30 m/spl ω /-cm。原位硼掺杂,电阻率可低至0.6 m/spl ω /-cm。使用这些薄膜作为一个封装层上面的加速度计显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New low-stress PECVD poly-SiGe Layers for MEMS
Thick poly-SiGe layers, deposited by plasma-enhanced chemical vapor deposition (PECVD), are very promising structural layers for use in microaccelerometers, microgyroscopes or for thin-film encapsulation, especially for applications where the thermal budget is limited. In this work it is shown for the first time that these layers are an attractive alternative to low-pressure CVD (LPCVD) poly-Si or poly-SiGe because of their high growth rate (100-200 nm/min) and low deposition temperature (520/spl deg/C-590/spl deg/C). The combination of both of these features is impossible to achieve with either LPCVD SiGe (2-30 nm/min growth rate) or LPCVD poly-Si (annealing temperature higher than 900/spl deg/C to achieve structural layer having low tensile stress). Additional advantages are that no nucleation layer is needed (deposition directly on SiO/sub 2/ is possible) and that the as-deposited layers are polycrystalline. No stress or dopant activation anneal of the structural layer is needed since in situ phosphorus doping gives an as-deposited tensile stress down to 20 MPa, and a resistivity of 10 m/spl Omega/-cm to 30 m/spl Omega/-cm. With in situ boron doping, resistivities down to 0.6 m/spl Omega/-cm are possible. The use of these films as an encapsulation layer above an accelerometer is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOEMS tuning element for a Littrow external cavity laser Control mechanism of an organic self-regulating microfluidic system Deformation of blanketed and patterned bilayer thin-film microstructures during post-release and cyclic thermal loading Power delivery and locomotion of untethered microactuators Effect of trimethylsilane flow rate on the growth of SiC thin-films for fiber-optic temperature sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1