{"title":"机器人/UFS测试系统的仿真与控制及其在腰椎生物力学中的应用","authors":"T. Doehring, L. Gilbertson, James D. Kang","doi":"10.1115/imece2001/bed-23081","DOIUrl":null,"url":null,"abstract":"\n Control of biomechanical experiments, especially those involving musculoskeletal joints such as the knee or spine, is a complicated problem because of the highly nonlinear kinematic, structural, and material properties of the tissue. Historically, materials testing machines with one or two degrees of freedom (DOF) (e.g. biaxial Instron, MTS) have been used. However, these devices, originally designed for testing of “standardized” engineering materials, are limited in two critical areas: 1) The number of DOF, and 2) The control system, which restricts the experiment to either “force control” or “displacement control” methods.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and Control of a Robotic/UFS Testing System With Application to Lumbar Spine Biomechanics\",\"authors\":\"T. Doehring, L. Gilbertson, James D. Kang\",\"doi\":\"10.1115/imece2001/bed-23081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Control of biomechanical experiments, especially those involving musculoskeletal joints such as the knee or spine, is a complicated problem because of the highly nonlinear kinematic, structural, and material properties of the tissue. Historically, materials testing machines with one or two degrees of freedom (DOF) (e.g. biaxial Instron, MTS) have been used. However, these devices, originally designed for testing of “standardized” engineering materials, are limited in two critical areas: 1) The number of DOF, and 2) The control system, which restricts the experiment to either “force control” or “displacement control” methods.\",\"PeriodicalId\":7238,\"journal\":{\"name\":\"Advances in Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/bed-23081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and Control of a Robotic/UFS Testing System With Application to Lumbar Spine Biomechanics
Control of biomechanical experiments, especially those involving musculoskeletal joints such as the knee or spine, is a complicated problem because of the highly nonlinear kinematic, structural, and material properties of the tissue. Historically, materials testing machines with one or two degrees of freedom (DOF) (e.g. biaxial Instron, MTS) have been used. However, these devices, originally designed for testing of “standardized” engineering materials, are limited in two critical areas: 1) The number of DOF, and 2) The control system, which restricts the experiment to either “force control” or “displacement control” methods.