{"title":"函数的信息先验分布及其在函数回归中的应用","authors":"C. Abraham","doi":"10.1111/stan.12322","DOIUrl":null,"url":null,"abstract":"We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar‐on‐function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"21 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Informative Prior distribution on Functions with Application to Functional Regression\",\"authors\":\"C. Abraham\",\"doi\":\"10.1111/stan.12322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar‐on‐function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12322\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12322","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
An Informative Prior distribution on Functions with Application to Functional Regression
We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar‐on‐function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.This article is protected by copyright. All rights reserved.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.