Janice M. H. Cheng, A. A. Khan, Mattie S. M. Timmer, B. L. Stocker
{"title":"内源性和外源性cd1结合糖脂","authors":"Janice M. H. Cheng, A. A. Khan, Mattie S. M. Timmer, B. L. Stocker","doi":"10.1155/2011/749591","DOIUrl":null,"url":null,"abstract":"In the same way that peptide antigens are presented by major histocompatibility complex (MHC) molecules, glycolipid antigens can also activate the immune response via binding to CD1 proteins on antigen-presenting cells (APCs) and stimulate CD1-restricted T cells. In humans, there are five members of the CD1 family, termed CD1a–e, of which CD1a–d are involved in glycolipid presentation at the cell surface, while CD1e is involved in the intracellular trafficking of glycolipid antigens. Both endogenous (self-derived) and exogenous (non-self-derived) glycolipids have been shown to bind to members of the CD1 family with varying degrees of specificity. In this paper we focus on the key glycolipids that bind to the different members of the CD1 family.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"93 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Endogenous and Exogenous CD1-Binding Glycolipids\",\"authors\":\"Janice M. H. Cheng, A. A. Khan, Mattie S. M. Timmer, B. L. Stocker\",\"doi\":\"10.1155/2011/749591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the same way that peptide antigens are presented by major histocompatibility complex (MHC) molecules, glycolipid antigens can also activate the immune response via binding to CD1 proteins on antigen-presenting cells (APCs) and stimulate CD1-restricted T cells. In humans, there are five members of the CD1 family, termed CD1a–e, of which CD1a–d are involved in glycolipid presentation at the cell surface, while CD1e is involved in the intracellular trafficking of glycolipid antigens. Both endogenous (self-derived) and exogenous (non-self-derived) glycolipids have been shown to bind to members of the CD1 family with varying degrees of specificity. In this paper we focus on the key glycolipids that bind to the different members of the CD1 family.\",\"PeriodicalId\":13788,\"journal\":{\"name\":\"International Journal of Carbohydrate Chemistry\",\"volume\":\"93 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Carbohydrate Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/749591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Carbohydrate Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/749591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the same way that peptide antigens are presented by major histocompatibility complex (MHC) molecules, glycolipid antigens can also activate the immune response via binding to CD1 proteins on antigen-presenting cells (APCs) and stimulate CD1-restricted T cells. In humans, there are five members of the CD1 family, termed CD1a–e, of which CD1a–d are involved in glycolipid presentation at the cell surface, while CD1e is involved in the intracellular trafficking of glycolipid antigens. Both endogenous (self-derived) and exogenous (non-self-derived) glycolipids have been shown to bind to members of the CD1 family with varying degrees of specificity. In this paper we focus on the key glycolipids that bind to the different members of the CD1 family.