Five products of -(6-carboxyl cyclohex-3-ene carbonyl) chitosan as antimicrobial agents were prepared by reaction of chitosan with tetrahydrophthalic anhydride (THPA) at different degrees of substitution (DS). The antimicrobial activity was evaluated against four plant bacteria and eight fungi. The results proved that the inhibitory property and water solubility of the synthesized chitosan derivatives, with increase of the DS, exhibited a remarkable improvement over chitosan. The product with a DS of 0.40 was the most active one with MIC of 510, 735, 240, and 385 mg/L against Erwinia carotovora, Ralstonia solanacearum, Rhodococcus fascians, and Rhizobium radiobacter, respectively, and also in mycelial growth inhibition against Alternaria alternata (EC50 = 683 mg/L), Botrytis cinerea (EC50 = 774 mg/L), Botryodiplodia theobromae (EC50 = 501 mg/L), Fusarium oxysporum (EC50 = 500 mg/L), F. solani (EC50 = 260 mg/L), Penicillium digitatum (EC50 = 417 mg/L), Phytophthora infestans (EC50 = 298 mg/L), and Sclerotinia sclerotiorum (EC50 = 763 mg/L). These compounds based on a biodegradable and biocompatible chitosan could be used as potentially antimicrobial agents in crop protection instead of hazardous synthetic pesticides.
{"title":"Synthesis and Antimicrobial Activity of N-(6-Carboxyl Cyclohex-3-ene Carbonyl) Chitosan with Different Degrees of Substitution","authors":"M. Badawy, E. Rabea","doi":"10.1155/2016/6046232","DOIUrl":"https://doi.org/10.1155/2016/6046232","url":null,"abstract":"Five products of -(6-carboxyl cyclohex-3-ene carbonyl) chitosan as antimicrobial agents were prepared by reaction of chitosan with tetrahydrophthalic anhydride (THPA) at different degrees of substitution (DS). The antimicrobial activity was evaluated against four plant bacteria and eight fungi. The results proved that the inhibitory property and water solubility of the synthesized chitosan derivatives, with increase of the DS, exhibited a remarkable improvement over chitosan. The product with a DS of 0.40 was the most active one with MIC of 510, 735, 240, and 385 mg/L against Erwinia carotovora, Ralstonia solanacearum, Rhodococcus fascians, and Rhizobium radiobacter, respectively, and also in mycelial growth inhibition against Alternaria alternata (EC50 = 683 mg/L), Botrytis cinerea (EC50 = 774 mg/L), Botryodiplodia theobromae (EC50 = 501 mg/L), Fusarium oxysporum (EC50 = 500 mg/L), F. solani (EC50 = 260 mg/L), Penicillium digitatum (EC50 = 417 mg/L), Phytophthora infestans (EC50 = 298 mg/L), and Sclerotinia sclerotiorum (EC50 = 763 mg/L). These compounds based on a biodegradable and biocompatible chitosan could be used as potentially antimicrobial agents in crop protection instead of hazardous synthetic pesticides.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"193 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75874984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The first synthesis of carbasugars, compounds in which the ring oxygen of a monosaccharide had been replaced by a methylene moiety, was described in 1966 by Professor G. E. McCasland’s group. Seven years later, the first true natural carbasugar (5a-carba-R-D-galactopyranose) was isolated from a fermentation broth of Streptomyces sp. MA-4145. In the following decades, the chemistry and biology of carbasugars have been extensively studied. Most of these compounds show interesting biological properties, especially enzymatic inhibitory activities, and, in consequence, an important number of analogues have also been prepared in the search for improved biological activities. The aim of this review is to give coverage on the progress made in two important aspects of these compounds: the elucidation of their biosynthesis and the consideration of their biological properties, including the extensively studied carbapyranoses as well as the much less studied carbafuranoses.
碳糖的第一次合成是在1966年由G. E. McCasland教授的小组描述的,碳糖是一种单糖环上的氧被亚甲基取代的化合物。七年后,第一个真正的天然碳糖(5a-碳- r - d -半乳糖糖)从链霉菌sp. MA-4145的发酵液中分离出来。在接下来的几十年里,碳糖的化学和生物学得到了广泛的研究。这些化合物中的大多数显示出有趣的生物学特性,特别是酶抑制活性,因此,在寻找改进的生物活性方面也制备了大量类似物。本文综述了这类化合物的两个重要方面的研究进展:对其生物合成的阐述和对其生物学特性的考虑,包括研究广泛的碳吡喃糖和研究较少的碳吡喃糖。
{"title":"Biosynthesis and Biological Activity of Carbasugars","authors":"Silvia Roscales, J. Plumet","doi":"10.1155/2016/4760548","DOIUrl":"https://doi.org/10.1155/2016/4760548","url":null,"abstract":"The first synthesis of carbasugars, compounds in which the ring oxygen of a monosaccharide had been replaced by a methylene moiety, was described in 1966 by Professor G. E. McCasland’s group. Seven years later, the first true natural carbasugar (5a-carba-R-D-galactopyranose) was isolated from a fermentation broth of Streptomyces sp. MA-4145. In the following decades, the chemistry and biology of carbasugars have been extensively studied. Most of these compounds show interesting biological properties, especially enzymatic inhibitory activities, and, in consequence, an important number of analogues have also been prepared in the search for improved biological activities. The aim of this review is to give coverage on the progress made in two important aspects of these compounds: the elucidation of their biosynthesis and the consideration of their biological properties, including the extensively studied carbapyranoses as well as the much less studied carbafuranoses.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"117 8","pages":"1-42"},"PeriodicalIF":0.0,"publicationDate":"2016-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91408759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ó. Benito-Román, A. Martín-Cortés, M. J. Cocero, E. Alonso
The purpose of this work was to study the behavior of (1-3)(1-4)-β-D-glucan in pressurized hot water. For this purpose, solid β-glucan (450 kDa) was put in water and heated at different temperatures (120, 150, and 170°C) for different times (5 to 360 minutes). At 120°C it was found that the highest soluble β-glucan concentration was measured after 60 minutes; at 150 and 170°C optimal times were 45 and 20 minutes, respectively. The maximum amount of β-glucan dissolved in each of the optimal conditions was 1.5, 2.2, and 2.0 g/L, respectively. Under those conditions an important reduction was observed in the molecular weight: at 120°C and 60 min it was 63 kDa; at 150°C and 45 min it was reduced down to 8 kDa; and at 170°C and 20 min it was only 7 kDa. Besides this reduction in the MW some hydrolysis products, such as glucose and HMF, were observed. These results revealed the convenience of using PHW to dissolve β-glucans since the operation times, compared to the conventional process (55°C, 3 h), were reduced despite the fact that the MW was significantly reduced once the β-glucan was dissolved; therefore, PHW can be used to extract β-glucans from barley under controlled conditions in order to prevent severe degradation.
{"title":"Dissolution of (1-3),(1-4)-β-Glucans in Pressurized Hot Water: Quantitative Assessment of the Degradation and the Effective Extraction","authors":"Ó. Benito-Román, A. Martín-Cortés, M. J. Cocero, E. Alonso","doi":"10.1155/2016/2189837","DOIUrl":"https://doi.org/10.1155/2016/2189837","url":null,"abstract":"The purpose of this work was to study the behavior of (1-3)(1-4)-β-D-glucan in pressurized hot water. For this purpose, solid β-glucan (450 kDa) was put in water and heated at different temperatures (120, 150, and 170°C) for different times (5 to 360 minutes). At 120°C it was found that the highest soluble β-glucan concentration was measured after 60 minutes; at 150 and 170°C optimal times were 45 and 20 minutes, respectively. The maximum amount of β-glucan dissolved in each of the optimal conditions was 1.5, 2.2, and 2.0 g/L, respectively. Under those conditions an important reduction was observed in the molecular weight: at 120°C and 60 min it was 63 kDa; at 150°C and 45 min it was reduced down to 8 kDa; and at 170°C and 20 min it was only 7 kDa. Besides this reduction in the MW some hydrolysis products, such as glucose and HMF, were observed. These results revealed the convenience of using PHW to dissolve β-glucans since the operation times, compared to the conventional process (55°C, 3 h), were reduced despite the fact that the MW was significantly reduced once the β-glucan was dissolved; therefore, PHW can be used to extract β-glucans from barley under controlled conditions in order to prevent severe degradation.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"68 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74856692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Miri, A. Ghasemian, H. Resalati, F. Zeinaly
Since the bleaching process is one of the most important environmental pollutant stages in the pulp and paper industry, here, the total chlorine-free (TCF) bleaching of poplar kraft pulp by applying Oxone and peroxide under alkaline conditions has been investigated. The pulp samples were bleached in two stages of Oxone () treatment using an A sequence (A: acid pretreatment), and then the treated pulps were bleached by peroxide (P) to achieve target brightness (about 80%). The influence of various reaction parameters such as alkali charge, temperature, reaction time, and bleaching agent dosage was optimized. The final achieved brightness was more than 78%. Accelerated aging experiments showed more stability in brightness for the Oxone treated pulp, because alkali Oxone bleaching stops thermal degradation. Similarly, the AP bleaching sequence was found to be effective in regaining some strength that had been lost during acidification of the pulp. Improvement in pulp strength made with acid treatment was achieved along with significant amount of lignin removal and it demonstrates the feasibility of Oxone in TCF bleaching. Furthermore, other results indicated the feasibility of Oxone bleaching as an environmentally favorable alternative TCF bleaching sequence, compared with elemental chlorine-free bleaching approaches and also other TCF bleaching sequences.
{"title":"Total Chlorine-Free Bleaching of Populus deltoides Kraft Pulp by Oxone","authors":"Mohsen Miri, A. Ghasemian, H. Resalati, F. Zeinaly","doi":"10.1155/2015/381242","DOIUrl":"https://doi.org/10.1155/2015/381242","url":null,"abstract":"Since the bleaching process is one of the most important environmental pollutant stages in the pulp and paper industry, here, the total chlorine-free (TCF) bleaching of poplar kraft pulp by applying Oxone and peroxide under alkaline conditions has been investigated. The pulp samples were bleached in two stages of Oxone () treatment using an A sequence (A: acid pretreatment), and then the treated pulps were bleached by peroxide (P) to achieve target brightness (about 80%). The influence of various reaction parameters such as alkali charge, temperature, reaction time, and bleaching agent dosage was optimized. The final achieved brightness was more than 78%. Accelerated aging experiments showed more stability in brightness for the Oxone treated pulp, because alkali Oxone bleaching stops thermal degradation. Similarly, the AP bleaching sequence was found to be effective in regaining some strength that had been lost during acidification of the pulp. Improvement in pulp strength made with acid treatment was achieved along with significant amount of lignin removal and it demonstrates the feasibility of Oxone in TCF bleaching. Furthermore, other results indicated the feasibility of Oxone bleaching as an environmentally favorable alternative TCF bleaching sequence, compared with elemental chlorine-free bleaching approaches and also other TCF bleaching sequences.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"38 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2015-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90964845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The third generation of glycoconjugated azo dyes (GADs) was prepared linking monoazo dyes to 6-amino-6-deoxy-d-galactose or 6′amino-6′-deoxylactose through mixed amido-ester connections. The complementary conjugation reactions were studied using the succinyl derivative of either the acetal protected aminosugar or the azo dye. Target “naturalized” GADs were obtained after acid hydrolysis of the acetal protecting groups present on the sugar moiety.
{"title":"A New Generation of Glycoconjugated Azo Dyes Based on Aminosugars","authors":"L. Guazzelli, G. Catelani, F. D’Andrea","doi":"10.1155/2015/235763","DOIUrl":"https://doi.org/10.1155/2015/235763","url":null,"abstract":"The third generation of glycoconjugated azo dyes (GADs) was prepared linking monoazo dyes to 6-amino-6-deoxy-d-galactose or 6′amino-6′-deoxylactose through mixed amido-ester connections. The complementary conjugation reactions were studied using the succinyl derivative of either the acetal protected aminosugar or the azo dye. Target “naturalized” GADs were obtained after acid hydrolysis of the acetal protecting groups present on the sugar moiety.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"88 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2015-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90942296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chitin and chitosan, valuable marine biopolymers, recovered from shrimp waste, are an abundant by-product of the shrimp processing industry in Vietnam, at an estimated 200000 metric tons per year. The obtained chitin and chitosan are characterized by their purity and functional properties. The polymers show good quality with low residual ash and protein content (<1%). The antioxidant potency of chitosan is evaluated by several different in vitro systems, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, total reducing power, and inhibition of lipid peroxidation. The DPPH free radical scavenging, total reducing power, and lipid peroxidation inhibition activities of chitosan at varying concentration (0.125 to 1.0 mg/mL) range from 3.7 to 16.8%, 0.05 to 0.15, and 1.7 to 15.1%, respectively. This study demonstrates that chitin and chitosan, of good quality and having characteristics compatible with a broad range of applications, can be prepared from white shrimp waste.
{"title":"Physicochemical Properties and Antioxidant Activity of Chitin and Chitosan Prepared from Pacific White Shrimp Waste","authors":"Trang Si Trung, H. N. D. Bao","doi":"10.1155/2015/706259","DOIUrl":"https://doi.org/10.1155/2015/706259","url":null,"abstract":"Chitin and chitosan, valuable marine biopolymers, recovered from shrimp waste, are an abundant by-product of the shrimp processing industry in Vietnam, at an estimated 200000 metric tons per year. The obtained chitin and chitosan are characterized by their purity and functional properties. The polymers show good quality with low residual ash and protein content (<1%). The antioxidant potency of chitosan is evaluated by several different in vitro systems, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, total reducing power, and inhibition of lipid peroxidation. The DPPH free radical scavenging, total reducing power, and lipid peroxidation inhibition activities of chitosan at varying concentration (0.125 to 1.0 mg/mL) range from 3.7 to 16.8%, 0.05 to 0.15, and 1.7 to 15.1%, respectively. This study demonstrates that chitin and chitosan, of good quality and having characteristics compatible with a broad range of applications, can be prepared from white shrimp waste.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"18 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2015-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75555944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A commercial apple pectin was sequentially digested with the cloned enzymes endopolygalacturonase, galactanase, arabinofuranosidase, xylogalacturonase, and rhamnogalacturonan hydrolase. The rhamnogalacturonan hydrolase-generated oligosaccharides were separated by ultrafiltration, anion exchange, and size-exclusion chromatography. Fractions from the ion exchange chromatography were pooled, lyophilized, and screened by MALDI-TOF MS. An oligosaccharide (RGP14P3) was identified and its structure, α-D-GalpA--α-L-Rhap--α-D-GalpA--α-L-Rhap--α-D-GalpA, determined by 1D and 2D NMR spectrometry. This oligosaccharide probably represents a direct connection between homogalacturonan and rhamnogalacturonan in pectin. Alternatively, it could indicate that the nonreducing end of rhamnogalacturonan starts with a galacturonic acid residue.
{"title":"Structure of a Rhamnogalacturonan Fragment from Apple Pectin: Implications for Pectin Architecture","authors":"Xiangmei Wu, A. Mort","doi":"10.1155/2014/347381","DOIUrl":"https://doi.org/10.1155/2014/347381","url":null,"abstract":"A commercial apple pectin was sequentially digested with the cloned enzymes endopolygalacturonase, galactanase, arabinofuranosidase, xylogalacturonase, and rhamnogalacturonan hydrolase. The rhamnogalacturonan hydrolase-generated oligosaccharides were separated by ultrafiltration, anion exchange, and size-exclusion chromatography. Fractions from the ion exchange chromatography were pooled, lyophilized, and screened by MALDI-TOF MS. An oligosaccharide (RGP14P3) was identified and its structure, α-D-GalpA--α-L-Rhap--α-D-GalpA--α-L-Rhap--α-D-GalpA, determined by 1D and 2D NMR spectrometry. This oligosaccharide probably represents a direct connection between homogalacturonan and rhamnogalacturonan in pectin. Alternatively, it could indicate that the nonreducing end of rhamnogalacturonan starts with a galacturonic acid residue.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"453 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82934030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kinetics and mechanism of micellar catalyzed N-bromosuccinimide oxidation of dextrose in H2SO4 medium was investigated under pseudo-first-order condition temperature of 40°C. The results of the reactions studied over a wide range of experimental conditions show that NBS shows a first order dependence, fractional order, on dextrose and negative fractional order dependence on sulfuric acid. The determined stoichiometric ratio was 1 : 1 (dextrose : N-bromosuccinimide). The variation of Hg(OAC)2 and succinimide (reaction product) has insignificant effect on reaction rate. Effects of surfactants, added acrylonitrile, added salts, and solvent composition variation have been studied. The Arrhenius activation energy and other thermodynamic activation parameters are evaluated. The rate law has been derived on the basis of obtained data. A plausible mechanism has been proposed from the results of kinetic studies, reaction stoichiometry, and product analysis. The role of anionic and nonionic micelle was best explained by the Berezin’s model.
{"title":"Kinetics and Mechanism of Micellar Catalyzed Oxidation of Dextrose by N-Bromosuccinimide in H2SO4 Medium","authors":"Minu Singh","doi":"10.1155/2014/783521","DOIUrl":"https://doi.org/10.1155/2014/783521","url":null,"abstract":"Kinetics and mechanism of micellar catalyzed N-bromosuccinimide oxidation of dextrose in H2SO4 medium was investigated under pseudo-first-order condition temperature of 40°C. The results of the reactions studied over a wide range of experimental conditions show that NBS shows a first order dependence, fractional order, on dextrose and negative fractional order dependence on sulfuric acid. The determined stoichiometric ratio was 1 : 1 (dextrose : N-bromosuccinimide). The variation of Hg(OAC)2 and succinimide (reaction product) has insignificant effect on reaction rate. Effects of surfactants, added acrylonitrile, added salts, and solvent composition variation have been studied. The Arrhenius activation energy and other thermodynamic activation parameters are evaluated. The rate law has been derived on the basis of obtained data. A plausible mechanism has been proposed from the results of kinetic studies, reaction stoichiometry, and product analysis. The role of anionic and nonionic micelle was best explained by the Berezin’s model.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"39 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80608153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrey V. Samoshin, I. Dotsenko, Nataliya M. Samoshina, A. Franz, V. Samoshin
Structurally simple 1-thio-β-D-glucopyranosides were synthesized and tested as potential inhibitors toward several fungal glycosidases from Aspergillus oryzae and Penicillium canescens. Significant selective inhibition was observed for α- and β-glucosidases, while a weak to moderate activation for α- and β-galactosidases.
合成了结构简单的1-硫代-β- d -葡萄糖吡喃苷,并对米曲霉和癌变青霉的几种真菌糖苷酶进行了潜在的抑制剂测试。对α-和β-葡萄糖苷酶有明显的选择性抑制,而对α-和β-半乳糖糖苷酶有弱至中度的激活。
{"title":"Thio-β-D-glucosides: Synthesis and Evaluation as Glycosidase Inhibitors and Activators","authors":"Andrey V. Samoshin, I. Dotsenko, Nataliya M. Samoshina, A. Franz, V. Samoshin","doi":"10.1155/2014/941059","DOIUrl":"https://doi.org/10.1155/2014/941059","url":null,"abstract":"Structurally simple 1-thio-β-D-glucopyranosides were synthesized and tested as potential inhibitors toward several fungal glycosidases from Aspergillus oryzae and Penicillium canescens. Significant selective inhibition was observed for α- and β-glucosidases, while a weak to moderate activation for α- and β-galactosidases.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"31 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2014-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74439583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present work, we have studied the inhibitory effects of aqueous and alcoholic extracts of six Algerian medicinal plants known by their therapeutic virtues against diabetes. The total phenolic compounds content, assayed using Folin-Ciocalteu’s reagent, of the samples ranged from 0.183 mg/g to 43.088 mg/g and from 1.197 mg/g to 7.445 mg/g, expressed as gallic acid equivalent (GAE), for the, respectively, whereas the total flavonoids concentrations, detected using 2% of the aluminium chloride, ranged from 0.41 mg/g to 11.613 mg/g and from 0.0097 mg/g to 1.591 mg/g, expressed as rutin equivalents (RE), for the aqueous and methanolic extracts, respectively. The major plants were found to inhibit enzymatic activities of Aspergillus oryzae-amylase in a concentration dependent manner. The values of the inhibition constants () have been determined according to the Dixon and Lineweaver-Burk methods. The results showed that the values were less than 55 ppm for the all extracts. A strong inhibition was found in the phenolic extract of Salvia officinalis with a of 8 ppm.
{"title":"Twenty Traditional Algerian Plants Used in Diabetes Therapy as Strong Inhibitors of α-Amylase Activity","authors":"Ihcen Khacheba, A. Djeridane, M. Yousfi","doi":"10.1155/2014/287281","DOIUrl":"https://doi.org/10.1155/2014/287281","url":null,"abstract":"In the present work, we have studied the inhibitory effects of aqueous and alcoholic extracts of six Algerian medicinal plants known by their therapeutic virtues against diabetes. The total phenolic compounds content, assayed using Folin-Ciocalteu’s reagent, of the samples ranged from 0.183 mg/g to 43.088 mg/g and from 1.197 mg/g to 7.445 mg/g, expressed as gallic acid equivalent (GAE), for the, respectively, whereas the total flavonoids concentrations, detected using 2% of the aluminium chloride, ranged from 0.41 mg/g to 11.613 mg/g and from 0.0097 mg/g to 1.591 mg/g, expressed as rutin equivalents (RE), for the aqueous and methanolic extracts, respectively. The major plants were found to inhibit enzymatic activities of Aspergillus oryzae-amylase in a concentration dependent manner. The values of the inhibition constants () have been determined according to the Dixon and Lineweaver-Burk methods. The results showed that the values were less than 55 ppm for the all extracts. A strong inhibition was found in the phenolic extract of Salvia officinalis with a of 8 ppm.","PeriodicalId":13788,"journal":{"name":"International Journal of Carbohydrate Chemistry","volume":"18 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81892471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}