反渗透法去除水中苯达松用响应面法优化有效参数

Mohammad Nematzadeh, A. Samimi, S. Shokrollahzadeh, Davod Mohebbi-Kalhori
{"title":"反渗透法去除水中苯达松用响应面法优化有效参数","authors":"Mohammad Nematzadeh, A. Samimi, S. Shokrollahzadeh, Davod Mohebbi-Kalhori","doi":"10.22104/AET.2020.4228.1209","DOIUrl":null,"url":null,"abstract":"Although bentazon is widely used as an agricultural herbicide, it is harmful to humans and poses many environmental threats. This study focused on the treatment of wastewater contaminated with bentazon pesticides using membrane technology. In this regard, low-pressure reverse osmosis (RO) was employed as it has already been used in the removal of other micro-pollutants. The effects of process variables on water flux and bentazon rejection were studied: temperature, pressure, and bentazon feed concentration. Based on central composite design (CCD), the quadratic model was engaged to correlate the process variables with the water flux and the bentazon removal responses. The obtained results showed that the bentazon rejection increased by enhancing the pressure while it decreased at higher feed solution concentration. However, with increasing temperature, the amount of bentazon removal was reduced. A bentazon rejection efficiency of 100 % could be achieved under optimum conditions (i.e., the temperature of 29.8 ℃ and hydrostatic pressure of 12.6 bar for a feed solution concentration of 66.9 mg/L). Therefore, reverse osmosis can effectively remove bentazon.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bentazon removal from aqueous solution by reverse osmosis; optimization of effective parameters using response surface methodology\",\"authors\":\"Mohammad Nematzadeh, A. Samimi, S. Shokrollahzadeh, Davod Mohebbi-Kalhori\",\"doi\":\"10.22104/AET.2020.4228.1209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although bentazon is widely used as an agricultural herbicide, it is harmful to humans and poses many environmental threats. This study focused on the treatment of wastewater contaminated with bentazon pesticides using membrane technology. In this regard, low-pressure reverse osmosis (RO) was employed as it has already been used in the removal of other micro-pollutants. The effects of process variables on water flux and bentazon rejection were studied: temperature, pressure, and bentazon feed concentration. Based on central composite design (CCD), the quadratic model was engaged to correlate the process variables with the water flux and the bentazon removal responses. The obtained results showed that the bentazon rejection increased by enhancing the pressure while it decreased at higher feed solution concentration. However, with increasing temperature, the amount of bentazon removal was reduced. A bentazon rejection efficiency of 100 % could be achieved under optimum conditions (i.e., the temperature of 29.8 ℃ and hydrostatic pressure of 12.6 bar for a feed solution concentration of 66.9 mg/L). Therefore, reverse osmosis can effectively remove bentazon.\",\"PeriodicalId\":7295,\"journal\":{\"name\":\"Advances in environmental science and technology\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in environmental science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22104/AET.2020.4228.1209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2020.4228.1209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

苯达松是一种广泛使用的农业除草剂,但它对人体有害,并对环境造成诸多威胁。研究了利用膜技术处理苯达松农药污染废水。在这方面,采用了低压反渗透(RO),因为它已经用于去除其他微污染物。研究了温度、压力和苯他松进料浓度对水通量和苯他松去除率的影响。基于中心复合设计(CCD),建立了过程变量与水通量和苯达松去除响应的二次模型。结果表明,压力越大,苯达松的截留率越高,进料溶液浓度越高,苯达松的截留率越低。但随着温度的升高,苯达松的去除率降低。在进料液浓度为66.9 mg/L、温度为29.8℃、静水压力为12.6 bar的最佳条件下,苯他松的去除率可达100%。因此,反渗透可以有效去除苯达松。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bentazon removal from aqueous solution by reverse osmosis; optimization of effective parameters using response surface methodology
Although bentazon is widely used as an agricultural herbicide, it is harmful to humans and poses many environmental threats. This study focused on the treatment of wastewater contaminated with bentazon pesticides using membrane technology. In this regard, low-pressure reverse osmosis (RO) was employed as it has already been used in the removal of other micro-pollutants. The effects of process variables on water flux and bentazon rejection were studied: temperature, pressure, and bentazon feed concentration. Based on central composite design (CCD), the quadratic model was engaged to correlate the process variables with the water flux and the bentazon removal responses. The obtained results showed that the bentazon rejection increased by enhancing the pressure while it decreased at higher feed solution concentration. However, with increasing temperature, the amount of bentazon removal was reduced. A bentazon rejection efficiency of 100 % could be achieved under optimum conditions (i.e., the temperature of 29.8 ℃ and hydrostatic pressure of 12.6 bar for a feed solution concentration of 66.9 mg/L). Therefore, reverse osmosis can effectively remove bentazon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis of tropospheric ozone and its precursors using principal component analysis in an urban area of Surat, India The effects of different materials of green roofing on the quantity and quality of stored and drainage water by using simulated rainfall setup The CO2 removal of flue gas using hollow fiber membrane contactor: a comprehensive modeling and new perspectives Social Cost of CO2 emissions in Tehran Waste Management Scenarios and select the scenario based on least impact on Global Warming by using Life Cycle Assessment Surface Ignition Using Ethanol on Mo and Al2O3-TiO2 Coated in CI Engine for Environmental Benefits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1