基于岩性测井、测井、地震数据和现有机器学习和分类方法的概率面模型生成

Henadz Zaitsau, Valeri Shumilyak, Alexander Konyushenko
{"title":"基于岩性测井、测井、地震数据和现有机器学习和分类方法的概率面模型生成","authors":"Henadz Zaitsau, Valeri Shumilyak, Alexander Konyushenko","doi":"10.2118/206547-ms","DOIUrl":null,"url":null,"abstract":"\n The main topic of an article is machine learning and classification (neural net) use for prognostic lithological model creation. Moreover, research preceding stages such as attribute analysis, seismic inversion, seismogeological modeling and briefly the results of lithological and petrophysical investigations are described in this art","PeriodicalId":11177,"journal":{"name":"Day 4 Fri, October 15, 2021","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of a Probabilistic Facial Model on the Basis of Lithology Logs, Well Logs, Seismic Data and Existing Methods of Machine Learning and Classification\",\"authors\":\"Henadz Zaitsau, Valeri Shumilyak, Alexander Konyushenko\",\"doi\":\"10.2118/206547-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The main topic of an article is machine learning and classification (neural net) use for prognostic lithological model creation. Moreover, research preceding stages such as attribute analysis, seismic inversion, seismogeological modeling and briefly the results of lithological and petrophysical investigations are described in this art\",\"PeriodicalId\":11177,\"journal\":{\"name\":\"Day 4 Fri, October 15, 2021\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Fri, October 15, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206547-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, October 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206547-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章的主题是机器学习和分类(神经网络)用于预测岩性模型的创建。此外,本领域还介绍了属性分析、地震反演、地震地质建模等研究前阶段以及岩性和岩石物理研究的简要结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of a Probabilistic Facial Model on the Basis of Lithology Logs, Well Logs, Seismic Data and Existing Methods of Machine Learning and Classification
The main topic of an article is machine learning and classification (neural net) use for prognostic lithological model creation. Moreover, research preceding stages such as attribute analysis, seismic inversion, seismogeological modeling and briefly the results of lithological and petrophysical investigations are described in this art
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experience of Application of Different Multiphase Metering Technologies for Cold Production and High Viscosity Oil Systems Evaluating Efficiency of Multilateral Producing Wells in Bottom Water-Drive Reservoir with a Gas Cap by Distributed Fiber-Optic Sensors and Continuous Pressure Monitoring Operation Features of Wells with an Extended Horizontal Wellbore and Multistage Hydraulic Fracturing Operation in Bazhenov Formation Comparative Analysis of Tracers Against Pressure Pulse Code Interference Testing based on the Numerical Simulations of the Synthetic Oilfields with Complicated Geology Innovative Approach to Analysis Drilling Tool Works
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1