{"title":"预测分析与跨学科框架在促进多慢性病患者为中心的护理:趋势,挑战和解决方案","authors":"T. Wan, Hu Wan","doi":"10.3390/ai4030026","DOIUrl":null,"url":null,"abstract":"Context. This commentary is based on an innovative approach to the development of predictive analytics. It is centered on the development of predictive models for varying stages of chronic disease through integrating all types of datasets, adds various new features to a theoretically driven data warehousing, creates purpose-specific prediction models, and integrates multi-criteria predictions of chronic disease progression based on a biomedical evolutionary learning platform. After merging across-center databases based on the risk factors identified from modeling the predictors of chronic disease progression, the collaborative investigators could conduct multi-center verification of the predictive model and further develop a clinical decision support system coupled with visualization of a shared decision-making feature for patient care. The Study Problem. The success of health services management research is dependent upon the stability of pattern detection and the usefulness of nosological classification formulated from big-data-to-knowledge research on chronic conditions. However, longitudinal observations with multiple waves of predictors and outcomes are needed to capture the evolution of polychronic conditions. Motivation. The transitional probabilities could be estimated from big-data analysis with further verification. Simulation or predictive models could then generate a useful explanatory pathogenesis of the end-stage-disorder or outcomes. Hence, the clinical decision support system for patient-centered interventions could be systematically designed and executed. Methodology. A customized algorithm for polychronic conditions coupled with constraints-oriented reasoning approaches is suggested. Based on theoretical specifications of causal inquiries, we could mitigate the effects of multiple confounding factors in conducting evaluation research on the determinants of patient care outcomes. This is what we consider as the mechanism for avoiding the black-box expression in the formulation of predictive analytics. The remaining task is to gather new data to verify the practical utility of the proposed and validated predictive equation(s). More specifically, this includes two approaches guiding future research on chronic disease and care management: (1) To develop a biomedical evolutionary learning platform to predict the risk of polychronic conditions at various stages, especially for predicting the micro- and macro-cardiovascular complications experienced by patients with Type 2 diabetes for multidisciplinary care; and (2) to formulate appropriate prescriptive intervention services, such as patient-centered care management interventions for a high-risk group of patients with polychronic conditions. Conclusions. The commentary has identified trends, challenges, and solutions in conducting innovative AI-based healthcare research that can improve understandings of disease-state transitions from diabetes to other chronic polychronic conditions. Hence, better predictive models could be further formulated to expand from inductive (problem solving) to deductive (theory based and hypothesis testing) inquiries in care management research.","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions\",\"authors\":\"T. Wan, Hu Wan\",\"doi\":\"10.3390/ai4030026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context. This commentary is based on an innovative approach to the development of predictive analytics. It is centered on the development of predictive models for varying stages of chronic disease through integrating all types of datasets, adds various new features to a theoretically driven data warehousing, creates purpose-specific prediction models, and integrates multi-criteria predictions of chronic disease progression based on a biomedical evolutionary learning platform. After merging across-center databases based on the risk factors identified from modeling the predictors of chronic disease progression, the collaborative investigators could conduct multi-center verification of the predictive model and further develop a clinical decision support system coupled with visualization of a shared decision-making feature for patient care. The Study Problem. The success of health services management research is dependent upon the stability of pattern detection and the usefulness of nosological classification formulated from big-data-to-knowledge research on chronic conditions. However, longitudinal observations with multiple waves of predictors and outcomes are needed to capture the evolution of polychronic conditions. Motivation. The transitional probabilities could be estimated from big-data analysis with further verification. Simulation or predictive models could then generate a useful explanatory pathogenesis of the end-stage-disorder or outcomes. Hence, the clinical decision support system for patient-centered interventions could be systematically designed and executed. Methodology. A customized algorithm for polychronic conditions coupled with constraints-oriented reasoning approaches is suggested. Based on theoretical specifications of causal inquiries, we could mitigate the effects of multiple confounding factors in conducting evaluation research on the determinants of patient care outcomes. This is what we consider as the mechanism for avoiding the black-box expression in the formulation of predictive analytics. The remaining task is to gather new data to verify the practical utility of the proposed and validated predictive equation(s). More specifically, this includes two approaches guiding future research on chronic disease and care management: (1) To develop a biomedical evolutionary learning platform to predict the risk of polychronic conditions at various stages, especially for predicting the micro- and macro-cardiovascular complications experienced by patients with Type 2 diabetes for multidisciplinary care; and (2) to formulate appropriate prescriptive intervention services, such as patient-centered care management interventions for a high-risk group of patients with polychronic conditions. Conclusions. The commentary has identified trends, challenges, and solutions in conducting innovative AI-based healthcare research that can improve understandings of disease-state transitions from diabetes to other chronic polychronic conditions. Hence, better predictive models could be further formulated to expand from inductive (problem solving) to deductive (theory based and hypothesis testing) inquiries in care management research.\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3390/ai4030026\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/ai4030026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predictive Analytics with a Transdisciplinary Framework in Promoting Patient-Centric Care of Polychronic Conditions: Trends, Challenges, and Solutions
Context. This commentary is based on an innovative approach to the development of predictive analytics. It is centered on the development of predictive models for varying stages of chronic disease through integrating all types of datasets, adds various new features to a theoretically driven data warehousing, creates purpose-specific prediction models, and integrates multi-criteria predictions of chronic disease progression based on a biomedical evolutionary learning platform. After merging across-center databases based on the risk factors identified from modeling the predictors of chronic disease progression, the collaborative investigators could conduct multi-center verification of the predictive model and further develop a clinical decision support system coupled with visualization of a shared decision-making feature for patient care. The Study Problem. The success of health services management research is dependent upon the stability of pattern detection and the usefulness of nosological classification formulated from big-data-to-knowledge research on chronic conditions. However, longitudinal observations with multiple waves of predictors and outcomes are needed to capture the evolution of polychronic conditions. Motivation. The transitional probabilities could be estimated from big-data analysis with further verification. Simulation or predictive models could then generate a useful explanatory pathogenesis of the end-stage-disorder or outcomes. Hence, the clinical decision support system for patient-centered interventions could be systematically designed and executed. Methodology. A customized algorithm for polychronic conditions coupled with constraints-oriented reasoning approaches is suggested. Based on theoretical specifications of causal inquiries, we could mitigate the effects of multiple confounding factors in conducting evaluation research on the determinants of patient care outcomes. This is what we consider as the mechanism for avoiding the black-box expression in the formulation of predictive analytics. The remaining task is to gather new data to verify the practical utility of the proposed and validated predictive equation(s). More specifically, this includes two approaches guiding future research on chronic disease and care management: (1) To develop a biomedical evolutionary learning platform to predict the risk of polychronic conditions at various stages, especially for predicting the micro- and macro-cardiovascular complications experienced by patients with Type 2 diabetes for multidisciplinary care; and (2) to formulate appropriate prescriptive intervention services, such as patient-centered care management interventions for a high-risk group of patients with polychronic conditions. Conclusions. The commentary has identified trends, challenges, and solutions in conducting innovative AI-based healthcare research that can improve understandings of disease-state transitions from diabetes to other chronic polychronic conditions. Hence, better predictive models could be further formulated to expand from inductive (problem solving) to deductive (theory based and hypothesis testing) inquiries in care management research.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.