大茴香和菖蒲对神经退行性疾病中kainic酸致神经元损伤的保护作用

Q4 Pharmacology, Toxicology and Pharmaceutics Pharmaceutical Sciences Asia Pub Date : 2022-01-01 DOI:10.29090/psa.2022.03.21.254
Gajanand R Pujari, V. Subramanian, S. Rao
{"title":"大茴香和菖蒲对神经退行性疾病中kainic酸致神经元损伤的保护作用","authors":"Gajanand R Pujari, V. Subramanian, S. Rao","doi":"10.29090/psa.2022.03.21.254","DOIUrl":null,"url":null,"abstract":"Neurodegenerative diseases (NDs) are caused by the dysfunction of neurons. Neuronal death is associated with the aggregation of proteins in neurons and glial cells. The aggregated proteins impede mitochondrial function and induce oxidative stress. Increased oxidative stress produces more reactive oxygen species (ROS) which is detrimental to cells in the brain causes neuronal degeneration. There are no treatments for NDs other than reducing disease progression. Hence, the treatment strategies, which reduce oxidative stress and neuronal damage are in demand. Celastrus paniculatus Willd (CP) and Sida cordifolia Linn (SC) have been extensively used in the indigenous therapeutic systems for treating various brain-related ailments. The present investigation was carried out to examine the biochemical and histological alterations of seed oil of CP (SOCP) and aqueous root extract of SC (ARESC) on the hippocampus of the brain in Kainic acid (KA)-induced NDs. The extracts of SOCP and ARESC were administered for 14 days and KA was administered by i.p. on the 14 th day to all the groups except the vehicle control group. At the end of the study, the rat brain was removed, the hippocampus was separated, and the homogenate was prepared to estimate the antioxidant parameters (SOD, catalase, and LPO). LDH assay, dopamine (DA) level, α-synuclein immunohistochemistry, and ROS assays were conducted. The results revealed that the treatment with SOCP and ARESC increased the levels of antioxidant enzymes, reduced oxidative stress, decreased α-synuclein protein aggregation, and elevated the levels of DA neurotransmitters.","PeriodicalId":19761,"journal":{"name":"Pharmaceutical Sciences Asia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective role of Celastrus paniculatus Willd and Sida cordifolia Linn on kainic acid-induced neuronal damage in neurodegenerative diseases\",\"authors\":\"Gajanand R Pujari, V. Subramanian, S. Rao\",\"doi\":\"10.29090/psa.2022.03.21.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurodegenerative diseases (NDs) are caused by the dysfunction of neurons. Neuronal death is associated with the aggregation of proteins in neurons and glial cells. The aggregated proteins impede mitochondrial function and induce oxidative stress. Increased oxidative stress produces more reactive oxygen species (ROS) which is detrimental to cells in the brain causes neuronal degeneration. There are no treatments for NDs other than reducing disease progression. Hence, the treatment strategies, which reduce oxidative stress and neuronal damage are in demand. Celastrus paniculatus Willd (CP) and Sida cordifolia Linn (SC) have been extensively used in the indigenous therapeutic systems for treating various brain-related ailments. The present investigation was carried out to examine the biochemical and histological alterations of seed oil of CP (SOCP) and aqueous root extract of SC (ARESC) on the hippocampus of the brain in Kainic acid (KA)-induced NDs. The extracts of SOCP and ARESC were administered for 14 days and KA was administered by i.p. on the 14 th day to all the groups except the vehicle control group. At the end of the study, the rat brain was removed, the hippocampus was separated, and the homogenate was prepared to estimate the antioxidant parameters (SOD, catalase, and LPO). LDH assay, dopamine (DA) level, α-synuclein immunohistochemistry, and ROS assays were conducted. The results revealed that the treatment with SOCP and ARESC increased the levels of antioxidant enzymes, reduced oxidative stress, decreased α-synuclein protein aggregation, and elevated the levels of DA neurotransmitters.\",\"PeriodicalId\":19761,\"journal\":{\"name\":\"Pharmaceutical Sciences Asia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Sciences Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29090/psa.2022.03.21.254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Sciences Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29090/psa.2022.03.21.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病是由神经元功能障碍引起的。神经元死亡与神经元和神经胶质细胞中蛋白质的聚集有关。聚集的蛋白质阻碍线粒体功能并诱导氧化应激。增加的氧化应激产生更多的活性氧(ROS),这对大脑细胞有害,导致神经元变性。除了减缓疾病进展,没有其他治疗方法。因此,需要减少氧化应激和神经元损伤的治疗策略。白斑芹(Celastrus paniculatus Willd, CP)和菖蒲(Sida cordifolia Linn, SC)已被广泛用于治疗各种脑相关疾病的土著治疗系统中。本实验研究了桂花籽油(SOCP)和桂花根水提物(ARESC)在Kainic acid (KA)诱导的NDs中对海马组织的生化和组织学改变。除载药对照组外,其余各组均连续给予SOCP和ARESC提取物14 d,第14 d以灌胃方式给予KA。研究结束时,取大鼠脑,分离海马,制备匀浆,测定抗氧化参数(SOD、过氧化氢酶、LPO)。LDH测定、多巴胺(DA)水平、α-突触核蛋白免疫组化、ROS测定。结果表明,SOCP和ARESC处理可提高大鼠抗氧化酶水平,减轻氧化应激,降低α-突触核蛋白聚集,提高DA神经递质水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuroprotective role of Celastrus paniculatus Willd and Sida cordifolia Linn on kainic acid-induced neuronal damage in neurodegenerative diseases
Neurodegenerative diseases (NDs) are caused by the dysfunction of neurons. Neuronal death is associated with the aggregation of proteins in neurons and glial cells. The aggregated proteins impede mitochondrial function and induce oxidative stress. Increased oxidative stress produces more reactive oxygen species (ROS) which is detrimental to cells in the brain causes neuronal degeneration. There are no treatments for NDs other than reducing disease progression. Hence, the treatment strategies, which reduce oxidative stress and neuronal damage are in demand. Celastrus paniculatus Willd (CP) and Sida cordifolia Linn (SC) have been extensively used in the indigenous therapeutic systems for treating various brain-related ailments. The present investigation was carried out to examine the biochemical and histological alterations of seed oil of CP (SOCP) and aqueous root extract of SC (ARESC) on the hippocampus of the brain in Kainic acid (KA)-induced NDs. The extracts of SOCP and ARESC were administered for 14 days and KA was administered by i.p. on the 14 th day to all the groups except the vehicle control group. At the end of the study, the rat brain was removed, the hippocampus was separated, and the homogenate was prepared to estimate the antioxidant parameters (SOD, catalase, and LPO). LDH assay, dopamine (DA) level, α-synuclein immunohistochemistry, and ROS assays were conducted. The results revealed that the treatment with SOCP and ARESC increased the levels of antioxidant enzymes, reduced oxidative stress, decreased α-synuclein protein aggregation, and elevated the levels of DA neurotransmitters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Sciences Asia
Pharmaceutical Sciences Asia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
0.90
自引率
0.00%
发文量
59
期刊介绍: The Pharmaceutical Sciences Asia (PSA) journal is a double-blinded peer-reviewed journal in English published quarterly, by the Faculty of Pharmacy, Mahidol University, Thailand. The PSA journal is formerly known as Mahidol University Journal of Pharmaceutical Sciences and committed to the timely publication of innovative articles and reviews. This journal is available in both printed and electronic formats. The PSA journal aims at establishing a publishing house that is open to all. It aims to disseminate knowledge; provide a learned reference in the field; and establish channels of communication between academic and research expert, policy makers and executives in industry and investment institutions. The journal publishes research articles, review articles, and scientific commentaries on all aspects of the pharmaceutical sciences and multidisciplinary field in health professions and medicine. More specifically, the journal publishes research on all areas of pharmaceutical sciences and related disciplines: Clinical Pharmacy Drug Synthesis and Discovery Targeted-Drug Delivery Pharmaceutics Biopharmaceutical Sciences Phytopharmaceutical Sciences Pharmacology and Toxicology Pharmaceutical Chemistry Nutraceuticals and Functional Foods Natural Products Social, Economic, and Administrative Pharmacy Clinical Drug Evaluation and Drug Policy Making Antimicrobials, Resistance and Infection Control Pharmacokinetics and Pharmacodynamics.
期刊最新文献
Locally-isolated protease-producing Bacillus spp. from soil inhibits biofilm formation of Staphylococcus aureus Medication errors analysis in Asia and Australia: A systematic review The effect of different sweeteners on the free radical scavenging activities, alcohol contents, sugar reductions, and hedonic properties of green tea kombucha Development and validation of a GC-MS method for determination of amphetamine-type stimulants and ketamine in human hair Effect of zonisamide and Nigella sativa on blood-brain barrier permeability and neurological severity in traumatic brain injury-induced mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1