Linda Aagaard Rasmussen, Niels Lyhne Christensen, Anne Winther-Larsen, Susanne Oksbjerg Dalton, Line Flytkjær Virgilsen, Henry Jensen, Peter Vedsted
{"title":"一种有效的基于注册的算法来识别丹麦手术治疗的I期肺癌复发患者。","authors":"Linda Aagaard Rasmussen, Niels Lyhne Christensen, Anne Winther-Larsen, Susanne Oksbjerg Dalton, Line Flytkjær Virgilsen, Henry Jensen, Peter Vedsted","doi":"10.2147/CLEP.S396738","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.</p><p><strong>Material and methods: </strong>Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.</p><p><strong>Results: </strong>The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.</p><p><strong>Conclusion: </strong>The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.</p>","PeriodicalId":10362,"journal":{"name":"Clinical Epidemiology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4d/d6/clep-15-251.PMC9986467.pdf","citationCount":"0","resultStr":"{\"title\":\"A Validated Register-Based Algorithm to Identify Patients Diagnosed with Recurrence of Surgically Treated Stage I Lung Cancer in Denmark.\",\"authors\":\"Linda Aagaard Rasmussen, Niels Lyhne Christensen, Anne Winther-Larsen, Susanne Oksbjerg Dalton, Line Flytkjær Virgilsen, Henry Jensen, Peter Vedsted\",\"doi\":\"10.2147/CLEP.S396738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.</p><p><strong>Material and methods: </strong>Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.</p><p><strong>Results: </strong>The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.</p><p><strong>Conclusion: </strong>The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.</p>\",\"PeriodicalId\":10362,\"journal\":{\"name\":\"Clinical Epidemiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4d/d6/clep-15-251.PMC9986467.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/CLEP.S396738\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CLEP.S396738","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A Validated Register-Based Algorithm to Identify Patients Diagnosed with Recurrence of Surgically Treated Stage I Lung Cancer in Denmark.
Introduction: Recurrence of cancer is not routinely registered in Danish national health registers. This study aimed to develop and validate a register-based algorithm to identify patients diagnosed with recurrent lung cancer and to estimate the accuracy of the identified diagnosis date.
Material and methods: Patients with early-stage lung cancer treated with surgery were included in the study. Recurrence indicators were diagnosis and procedure codes recorded in the Danish National Patient Register and pathology results recorded in the Danish National Pathology Register. Information from CT scans and medical records served as the gold standard to assess the accuracy of the algorithm.
Results: The final population consisted of 217 patients; 72 (33%) had recurrence according to the gold standard. The median follow-up time since primary lung cancer diagnosis was 29 months (interquartile interval: 18-46). The algorithm for identifying a recurrence reached a sensitivity of 83.3% (95% CI: 72.7-91.1), a specificity of 93.8% (95% CI: 88.5-97.1), and a positive predictive value of 87.0% (95% CI: 76.7-93.9). The algorithm identified 70% of the recurrences within 60 days of the recurrence date registered by the gold standard method. The positive predictive value of the algorithm decreased to 70% when the algorithm was simulated in a population with a recurrence rate of 15%.
Conclusion: The proposed algorithm demonstrated good performance in a population with 33% recurrences over a median of 29 months. It can be used to identify patients diagnosed with recurrent lung cancer, and it may be a valuable tool for future research in this field. However, a lower positive predictive value is seen when applying the algorithm in populations with low recurrence rates.
期刊介绍:
Clinical Epidemiology is an international, peer reviewed, open access journal. Clinical Epidemiology focuses on the application of epidemiological principles and questions relating to patients and clinical care in terms of prevention, diagnosis, prognosis, and treatment.
Clinical Epidemiology welcomes papers covering these topics in form of original research and systematic reviews.
Clinical Epidemiology has a special interest in international electronic medical patient records and other routine health care data, especially as applied to safety of medical interventions, clinical utility of diagnostic procedures, understanding short- and long-term clinical course of diseases, clinical epidemiological and biostatistical methods, and systematic reviews.
When considering submission of a paper utilizing publicly-available data, authors should ensure that such studies add significantly to the body of knowledge and that they use appropriate validated methods for identifying health outcomes.
The journal has launched special series describing existing data sources for clinical epidemiology, international health care systems and validation studies of algorithms based on databases and registries.