潜伏空间呢?深度时间序列分类中潜在特征显著性检测的必要性

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine learning and knowledge extraction Pub Date : 2023-05-18 DOI:10.3390/make5020032
Maresa Schröder, Alireza Zamanian, N. Ahmidi
{"title":"潜伏空间呢?深度时间序列分类中潜在特征显著性检测的必要性","authors":"Maresa Schröder, Alireza Zamanian, N. Ahmidi","doi":"10.3390/make5020032","DOIUrl":null,"url":null,"abstract":"Saliency methods are designed to provide explainability for deep image processing models by assigning feature-wise importance scores and thus detecting informative regions in the input images. Recently, these methods have been widely adapted to the time series domain, aiming to identify important temporal regions in a time series. This paper extends our former work on identifying the systematic failure of such methods in the time series domain to produce relevant results when informative patterns are based on underlying latent information rather than temporal regions. First, we both visually and quantitatively assess the quality of explanations provided by multiple state-of-the-art saliency methods, including Integrated Gradients, Deep-Lift, Kernel SHAP, and Lime using univariate simulated time series data with temporal or latent patterns. In addition, to emphasize the severity of the latent feature saliency detection problem, we also run experiments on a real-world predictive maintenance dataset with known latent patterns. We identify Integrated Gradients, Deep-Lift, and the input-cell attention mechanism as potential candidates for refinement to yield latent saliency scores. Finally, we provide recommendations on using saliency methods for time series classification and suggest a guideline for developing latent saliency methods for time series.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"23 1","pages":"539-559"},"PeriodicalIF":4.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What about the Latent Space? The Need for Latent Feature Saliency Detection in Deep Time Series Classification\",\"authors\":\"Maresa Schröder, Alireza Zamanian, N. Ahmidi\",\"doi\":\"10.3390/make5020032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency methods are designed to provide explainability for deep image processing models by assigning feature-wise importance scores and thus detecting informative regions in the input images. Recently, these methods have been widely adapted to the time series domain, aiming to identify important temporal regions in a time series. This paper extends our former work on identifying the systematic failure of such methods in the time series domain to produce relevant results when informative patterns are based on underlying latent information rather than temporal regions. First, we both visually and quantitatively assess the quality of explanations provided by multiple state-of-the-art saliency methods, including Integrated Gradients, Deep-Lift, Kernel SHAP, and Lime using univariate simulated time series data with temporal or latent patterns. In addition, to emphasize the severity of the latent feature saliency detection problem, we also run experiments on a real-world predictive maintenance dataset with known latent patterns. We identify Integrated Gradients, Deep-Lift, and the input-cell attention mechanism as potential candidates for refinement to yield latent saliency scores. Finally, we provide recommendations on using saliency methods for time series classification and suggest a guideline for developing latent saliency methods for time series.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"23 1\",\"pages\":\"539-559\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make5020032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make5020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

显著性方法旨在通过分配特征重要性分数,从而检测输入图像中的信息区域,为深度图像处理模型提供可解释性。近年来,这些方法已广泛应用于时间序列领域,旨在识别时间序列中重要的时间区域。本文扩展了我们以前的工作,即当信息模式基于潜在信息而不是时间区域时,识别此类方法在时间序列域中的系统性失败以产生相关结果。首先,我们使用具有时间或潜在模式的单变量模拟时间序列数据,从视觉和定量上评估多种最先进的显著性方法(包括集成梯度、Deep-Lift、Kernel SHAP和Lime)提供的解释的质量。此外,为了强调潜在特征显著性检测问题的严重性,我们还在具有已知潜在模式的真实预测维护数据集上运行了实验。我们确定了集成梯度、深度提升和输入细胞注意机制作为改进产生潜在显著性分数的潜在候选。最后,对显著性方法在时间序列分类中的应用提出了建议,并提出了发展时间序列潜在显著性方法的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What about the Latent Space? The Need for Latent Feature Saliency Detection in Deep Time Series Classification
Saliency methods are designed to provide explainability for deep image processing models by assigning feature-wise importance scores and thus detecting informative regions in the input images. Recently, these methods have been widely adapted to the time series domain, aiming to identify important temporal regions in a time series. This paper extends our former work on identifying the systematic failure of such methods in the time series domain to produce relevant results when informative patterns are based on underlying latent information rather than temporal regions. First, we both visually and quantitatively assess the quality of explanations provided by multiple state-of-the-art saliency methods, including Integrated Gradients, Deep-Lift, Kernel SHAP, and Lime using univariate simulated time series data with temporal or latent patterns. In addition, to emphasize the severity of the latent feature saliency detection problem, we also run experiments on a real-world predictive maintenance dataset with known latent patterns. We identify Integrated Gradients, Deep-Lift, and the input-cell attention mechanism as potential candidates for refinement to yield latent saliency scores. Finally, we provide recommendations on using saliency methods for time series classification and suggest a guideline for developing latent saliency methods for time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Knowledge Graph Extraction of Business Interactions from News Text for Business Networking Analysis Machine Learning for an Enhanced Credit Risk Analysis: A Comparative Study of Loan Approval Prediction Models Integrating Mental Health Data A Data Mining Approach for Health Transport Demand Predicting Wind Comfort in an Urban Area: A Comparison of a Regression- with a Classification-CNN for General Wind Rose Statistics An Evaluative Baseline for Sentence-Level Semantic Division
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1