基于深度学习的门机抓斗检测方法

Q3 Engineering 光电工程 Pub Date : 2021-01-15 DOI:10.12086/OEE.2021.200062
Zhang Wenming, Li Xiangyang, Li Hai-bin, Liu Ya-qian
{"title":"基于深度学习的门机抓斗检测方法","authors":"Zhang Wenming, Li Xiangyang, Li Hai-bin, Liu Ya-qian","doi":"10.12086/OEE.2021.200062","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of low work efficiency and safety caused by the inability of human eyes to accurately determine the position of the grab during the loading and unloading of dry bulk cargo by portal crane, a method of grab detection based on deep learning is proposed for the first time. The improved deep convolution neural network (YOLOv3-tiny) is used to train and test on the data set of grab, and then to learn its internal feature representation. The experimental results show that the detection method based on deep learning can achieve a detection speed of 45 frames per second and a recall rate of 95.78%. It can meet the real-time and accuracy of detection, and improve the safety and efficiency of work in the industrial field.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The detection method for grab of portal crane based on deep learning\",\"authors\":\"Zhang Wenming, Li Xiangyang, Li Hai-bin, Liu Ya-qian\",\"doi\":\"10.12086/OEE.2021.200062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problems of low work efficiency and safety caused by the inability of human eyes to accurately determine the position of the grab during the loading and unloading of dry bulk cargo by portal crane, a method of grab detection based on deep learning is proposed for the first time. The improved deep convolution neural network (YOLOv3-tiny) is used to train and test on the data set of grab, and then to learn its internal feature representation. The experimental results show that the detection method based on deep learning can achieve a detection speed of 45 frames per second and a recall rate of 95.78%. It can meet the real-time and accuracy of detection, and improve the safety and efficiency of work in the industrial field.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了解决门式起重机装卸干散货过程中人眼无法准确判断抓斗位置造成的工作效率低、安全性低等问题,首次提出了一种基于深度学习的抓斗检测方法。利用改进的深度卷积神经网络(YOLOv3-tiny)对抓取数据集进行训练和测试,进而学习其内部特征表示。实验结果表明,基于深度学习的检测方法可以实现45帧/秒的检测速度和95.78%的召回率。满足了检测的实时性和准确性,提高了工业现场工作的安全性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The detection method for grab of portal crane based on deep learning
In order to solve the problems of low work efficiency and safety caused by the inability of human eyes to accurately determine the position of the grab during the loading and unloading of dry bulk cargo by portal crane, a method of grab detection based on deep learning is proposed for the first time. The improved deep convolution neural network (YOLOv3-tiny) is used to train and test on the data set of grab, and then to learn its internal feature representation. The experimental results show that the detection method based on deep learning can achieve a detection speed of 45 frames per second and a recall rate of 95.78%. It can meet the real-time and accuracy of detection, and improve the safety and efficiency of work in the industrial field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1