{"title":"具有成像电位的聚酰亚胺薄膜的制备方法","authors":"Lv Gang, Yang Wei, Mao Danbo, Wu Shibin, Ren Ge","doi":"10.12086/OEE.2021.200381","DOIUrl":null,"url":null,"abstract":"Polyimide (PI) film is widely used in aerospace, microelectronics, and other fields because of its excellent thermal stability and mechanical strength. However, there are very few reports about its application in the direction of optical imaging. To use PI film for imaging, the requirements for the optical homogeneity of the PI film are extremely demanding. The optical homogeneity of the stretch-resistant PI film proposed in this paper with 100 mm diameter and low thermal expansion coefficient meets the Rayleigh criterion, which has the potential for applications in the imaging field. In addition, the tensile strength of this PI is 285 MPa, which is ~2.6 times that of the PMDA-ODA type PI; the coefficient of thermal expansion is about 3.2 ppmK-1, which is comparable to that of the Novastrat®905 type PI and is one order of magnitude lower than that of the commercial PI films. These excellent basic properties reserve more space to further improve the space adaptability of the PI film. The solution of the optical homogeneity of the PI film will lay the foundation for its application in thin film diffractive optical elements.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"63 1","pages":"200381"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation method for polyimide films with imaging potential\",\"authors\":\"Lv Gang, Yang Wei, Mao Danbo, Wu Shibin, Ren Ge\",\"doi\":\"10.12086/OEE.2021.200381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyimide (PI) film is widely used in aerospace, microelectronics, and other fields because of its excellent thermal stability and mechanical strength. However, there are very few reports about its application in the direction of optical imaging. To use PI film for imaging, the requirements for the optical homogeneity of the PI film are extremely demanding. The optical homogeneity of the stretch-resistant PI film proposed in this paper with 100 mm diameter and low thermal expansion coefficient meets the Rayleigh criterion, which has the potential for applications in the imaging field. In addition, the tensile strength of this PI is 285 MPa, which is ~2.6 times that of the PMDA-ODA type PI; the coefficient of thermal expansion is about 3.2 ppmK-1, which is comparable to that of the Novastrat®905 type PI and is one order of magnitude lower than that of the commercial PI films. These excellent basic properties reserve more space to further improve the space adaptability of the PI film. The solution of the optical homogeneity of the PI film will lay the foundation for its application in thin film diffractive optical elements.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":\"63 1\",\"pages\":\"200381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Preparation method for polyimide films with imaging potential
Polyimide (PI) film is widely used in aerospace, microelectronics, and other fields because of its excellent thermal stability and mechanical strength. However, there are very few reports about its application in the direction of optical imaging. To use PI film for imaging, the requirements for the optical homogeneity of the PI film are extremely demanding. The optical homogeneity of the stretch-resistant PI film proposed in this paper with 100 mm diameter and low thermal expansion coefficient meets the Rayleigh criterion, which has the potential for applications in the imaging field. In addition, the tensile strength of this PI is 285 MPa, which is ~2.6 times that of the PMDA-ODA type PI; the coefficient of thermal expansion is about 3.2 ppmK-1, which is comparable to that of the Novastrat®905 type PI and is one order of magnitude lower than that of the commercial PI films. These excellent basic properties reserve more space to further improve the space adaptability of the PI film. The solution of the optical homogeneity of the PI film will lay the foundation for its application in thin film diffractive optical elements.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing