农业发展与湿地保护并举的流域可持续水资源规划

A. Hatamkhani, A. KhazaiePoul, A. Moridi
{"title":"农业发展与湿地保护并举的流域可持续水资源规划","authors":"A. Hatamkhani, A. KhazaiePoul, A. Moridi","doi":"10.2166/aqua.2022.025","DOIUrl":null,"url":null,"abstract":"\n Reducing the quantity of water in recent years has increased the competition between development projects and the environment. Wetlands are increasingly under pressure due to human activities. The most serious threats to wetlands are excessive agriculture and the diversion of water for irrigation. In recent years, due to water shortage and drought, wetland dryness in Iran has caused many problems, including the dust crisis. Therefore, planning at the basin scale is necessary to achieve sustainable development, which emphasizes the employment of mathematical models. In this study, using a reliability-based simulation–optimization approach, development planning in the Karkheh basin with the following two objectives is investigated: (1) total area under cultivation of agricultural development sectors and (2) supply reliability of the environmental flow requirement. The Water Evaluation and Planning (WEAP) model is used for the simulation of water resources and the multi-objective particle swarm optimization (MOPSO) algorithm is employed for optimization. The results show that in addition to significantly improving the supply reliability of the wetland requirement (from 55 to 79%), the design of agricultural development projects has been optimized. The reliability-based model has prevented unsustainable developments in the basin. Also, the average supply reliability of agricultural demands has increased from 51% (in previous studies) to 72%.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sustainable water resource planning at the basin scale with simultaneous goals of agricultural development and wetland conservation\",\"authors\":\"A. Hatamkhani, A. KhazaiePoul, A. Moridi\",\"doi\":\"10.2166/aqua.2022.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Reducing the quantity of water in recent years has increased the competition between development projects and the environment. Wetlands are increasingly under pressure due to human activities. The most serious threats to wetlands are excessive agriculture and the diversion of water for irrigation. In recent years, due to water shortage and drought, wetland dryness in Iran has caused many problems, including the dust crisis. Therefore, planning at the basin scale is necessary to achieve sustainable development, which emphasizes the employment of mathematical models. In this study, using a reliability-based simulation–optimization approach, development planning in the Karkheh basin with the following two objectives is investigated: (1) total area under cultivation of agricultural development sectors and (2) supply reliability of the environmental flow requirement. The Water Evaluation and Planning (WEAP) model is used for the simulation of water resources and the multi-objective particle swarm optimization (MOPSO) algorithm is employed for optimization. The results show that in addition to significantly improving the supply reliability of the wetland requirement (from 55 to 79%), the design of agricultural development projects has been optimized. The reliability-based model has prevented unsustainable developments in the basin. Also, the average supply reliability of agricultural demands has increased from 51% (in previous studies) to 72%.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,水资源的减少加剧了开发项目与环境之间的竞争。由于人类活动,湿地的压力越来越大。对湿地最严重的威胁是过度的农业和引水灌溉。近年来,由于缺水和干旱,伊朗的湿地干旱造成了许多问题,包括沙尘危机。因此,流域尺度的规划是实现可持续发展的必要条件,强调数学模型的运用。本研究采用基于可靠性的模拟优化方法,以以下两个目标对库区发展规划进行了研究:(1)农业发展部门的种植总面积;(2)环境流量需求的供应可靠性。采用水资源评价与规划(WEAP)模型进行水资源模拟,采用多目标粒子群优化(MOPSO)算法进行优化。结果表明,除了显著提高湿地需求的供应可靠性(从55%提高到79%)外,农业开发项目的设计也得到了优化。基于可靠性的模型防止了该盆地的不可持续发展。此外,农业需求的平均供应可靠性从51%(在以前的研究中)增加到72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable water resource planning at the basin scale with simultaneous goals of agricultural development and wetland conservation
Reducing the quantity of water in recent years has increased the competition between development projects and the environment. Wetlands are increasingly under pressure due to human activities. The most serious threats to wetlands are excessive agriculture and the diversion of water for irrigation. In recent years, due to water shortage and drought, wetland dryness in Iran has caused many problems, including the dust crisis. Therefore, planning at the basin scale is necessary to achieve sustainable development, which emphasizes the employment of mathematical models. In this study, using a reliability-based simulation–optimization approach, development planning in the Karkheh basin with the following two objectives is investigated: (1) total area under cultivation of agricultural development sectors and (2) supply reliability of the environmental flow requirement. The Water Evaluation and Planning (WEAP) model is used for the simulation of water resources and the multi-objective particle swarm optimization (MOPSO) algorithm is employed for optimization. The results show that in addition to significantly improving the supply reliability of the wetland requirement (from 55 to 79%), the design of agricultural development projects has been optimized. The reliability-based model has prevented unsustainable developments in the basin. Also, the average supply reliability of agricultural demands has increased from 51% (in previous studies) to 72%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1