用ECM算法估计不完全工业过程数据集的缺失值

Mina Fahimi Pirehgalin, B. Vogel‐Heuser
{"title":"用ECM算法估计不完全工业过程数据集的缺失值","authors":"Mina Fahimi Pirehgalin, B. Vogel‐Heuser","doi":"10.1109/INDIN.2018.8471950","DOIUrl":null,"url":null,"abstract":"Estimation of missing values is an essential step in data pre-processing to increase the data quality for further data mining approaches. The significance of estimation of missing values in industrial data sets is that different operational situations cannot be describe properly while data sets includes missing values. In this paper, Expectation Conditional Maximization is used to find an approximated model over the data based on Gaussian distribution. Then, in the Expectation step, Sweep operation is used to obtain the regression model of missing values on observable values and estimate the missing values based on observable data. In order to evaluate the results a process data set for a real industrial production system is considered. The missing values are simulated by randomly removing the data from variables. Finally, the accuracy of the proposed method in estimation of missing values is discussed as well as the effect of imputation of missing values on further data analysis.","PeriodicalId":6467,"journal":{"name":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","volume":"52 1","pages":"251-257"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Missing Values in Incomplete Industrial Process Data Sets Using ECM Algorithm\",\"authors\":\"Mina Fahimi Pirehgalin, B. Vogel‐Heuser\",\"doi\":\"10.1109/INDIN.2018.8471950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of missing values is an essential step in data pre-processing to increase the data quality for further data mining approaches. The significance of estimation of missing values in industrial data sets is that different operational situations cannot be describe properly while data sets includes missing values. In this paper, Expectation Conditional Maximization is used to find an approximated model over the data based on Gaussian distribution. Then, in the Expectation step, Sweep operation is used to obtain the regression model of missing values on observable values and estimate the missing values based on observable data. In order to evaluate the results a process data set for a real industrial production system is considered. The missing values are simulated by randomly removing the data from variables. Finally, the accuracy of the proposed method in estimation of missing values is discussed as well as the effect of imputation of missing values on further data analysis.\",\"PeriodicalId\":6467,\"journal\":{\"name\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"52 1\",\"pages\":\"251-257\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2018.8471950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2018.8471950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

缺失值的估计是数据预处理中的一个重要步骤,它可以提高数据质量,从而为进一步的数据挖掘方法提供支持。缺失值估计在工业数据集中的意义在于,当数据集中包含缺失值时,不同的操作情况不能被恰当地描述。本文利用期望条件最大化方法对基于高斯分布的数据求近似模型。然后,在期望步骤中,使用Sweep操作获得缺失值对可观测值的回归模型,并根据可观测数据估计缺失值。为了对结果进行评价,我们考虑了一个实际工业生产系统的过程数据集。通过从变量中随机删除数据来模拟缺失值。最后,讨论了缺失值估计方法的准确性,以及缺失值的估计对进一步数据分析的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Missing Values in Incomplete Industrial Process Data Sets Using ECM Algorithm
Estimation of missing values is an essential step in data pre-processing to increase the data quality for further data mining approaches. The significance of estimation of missing values in industrial data sets is that different operational situations cannot be describe properly while data sets includes missing values. In this paper, Expectation Conditional Maximization is used to find an approximated model over the data based on Gaussian distribution. Then, in the Expectation step, Sweep operation is used to obtain the regression model of missing values on observable values and estimate the missing values based on observable data. In order to evaluate the results a process data set for a real industrial production system is considered. The missing values are simulated by randomly removing the data from variables. Finally, the accuracy of the proposed method in estimation of missing values is discussed as well as the effect of imputation of missing values on further data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPT - A decision-model-based Approach for Modeling Collaborative Assembly and Manufacturing Tasks Grey-box Model Identification and Fault Detection of Wind Turbines Using Artificial Neural Networks An Algorithmic Method for Tampering-Proof and Privacy-Preserving Smart Metering Digital Transformation as the Subject of Discursive Analysis Condition monitoring of wind-power units using the Derivative-free nonlinear Kalman Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1