用有限元法研究静、谐波荷载对蜂窝夹层梁的影响

IF 10.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL Facta Universitatis-Series Mechanical Engineering Pub Date : 2022-07-28 DOI:10.22190/fume220201009s
B. Safaei, Emmanuel Chukwueloka Onyibo, Dogus Hurdoganoglu
{"title":"用有限元法研究静、谐波荷载对蜂窝夹层梁的影响","authors":"B. Safaei, Emmanuel Chukwueloka Onyibo, Dogus Hurdoganoglu","doi":"10.22190/fume220201009s","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a proposed honeycomb core shape and compare it with a normal hexagonal shape core in a sandwich beam. The sandwich cores are simulated in finite element with different materials; aluminum and epoxy-carbon with six layers are used as face sheet and the results are compared to those obtained theoretically. Simulation of 3-point bending test is performed in commercial software ANSYS to verify the analytical results with the numerical ones. Hence, for simplicity one layer of the skin is used on the equivalent model of sandwich for lesser computational time and more accurate evaluation. Simulation of harmonic analysis of hexagonal core and proposed core shape is carried out in frequency domain to identify the core with less deformation under high frequency and it can withstand harmful effects. The proposed core shape model having the same cell numbers and material as the normal hexagonal model is compared with experimental results; it is observed that the proposed core shape model has good flexural stiffness, resonance, fatigue, and stress resistance at a higher frequency.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"EFFECT OF STATIC AND HARMONIC LOADING ON THE HONEYCOMB SANDWICH BEAM BY USING FINITE ELEMENT METHOD\",\"authors\":\"B. Safaei, Emmanuel Chukwueloka Onyibo, Dogus Hurdoganoglu\",\"doi\":\"10.22190/fume220201009s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to present a proposed honeycomb core shape and compare it with a normal hexagonal shape core in a sandwich beam. The sandwich cores are simulated in finite element with different materials; aluminum and epoxy-carbon with six layers are used as face sheet and the results are compared to those obtained theoretically. Simulation of 3-point bending test is performed in commercial software ANSYS to verify the analytical results with the numerical ones. Hence, for simplicity one layer of the skin is used on the equivalent model of sandwich for lesser computational time and more accurate evaluation. Simulation of harmonic analysis of hexagonal core and proposed core shape is carried out in frequency domain to identify the core with less deformation under high frequency and it can withstand harmful effects. The proposed core shape model having the same cell numbers and material as the normal hexagonal model is compared with experimental results; it is observed that the proposed core shape model has good flexural stiffness, resonance, fatigue, and stress resistance at a higher frequency.\",\"PeriodicalId\":51338,\"journal\":{\"name\":\"Facta Universitatis-Series Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22190/fume220201009s\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume220201009s","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 14

摘要

本文的目的是提出一种蜂窝核形状,并将其与夹层梁中正常的六角形核进行比较。对不同材料的夹层芯进行了有限元模拟;采用六层铝和环氧碳作为工作面,并与理论计算结果进行了比较。在商业软件ANSYS中进行了三点弯曲试验的仿真,以验证分析结果与数值结果的正确性。因此,为了简单起见,在三明治等效模型上使用一层皮肤,以减少计算时间和更准确的评估。在频域上对六角形铁芯和所提出的铁芯形状进行了谐波仿真分析,以确定高频下变形较小且能承受有害影响的铁芯。并与实验结果进行了比较,得到了具有相同单元数和相同材料的芯形模型;结果表明,所提出的芯形模型在较高频率下具有良好的抗弯刚度、共振性、疲劳性和抗应力性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EFFECT OF STATIC AND HARMONIC LOADING ON THE HONEYCOMB SANDWICH BEAM BY USING FINITE ELEMENT METHOD
The aim of this paper is to present a proposed honeycomb core shape and compare it with a normal hexagonal shape core in a sandwich beam. The sandwich cores are simulated in finite element with different materials; aluminum and epoxy-carbon with six layers are used as face sheet and the results are compared to those obtained theoretically. Simulation of 3-point bending test is performed in commercial software ANSYS to verify the analytical results with the numerical ones. Hence, for simplicity one layer of the skin is used on the equivalent model of sandwich for lesser computational time and more accurate evaluation. Simulation of harmonic analysis of hexagonal core and proposed core shape is carried out in frequency domain to identify the core with less deformation under high frequency and it can withstand harmful effects. The proposed core shape model having the same cell numbers and material as the normal hexagonal model is compared with experimental results; it is observed that the proposed core shape model has good flexural stiffness, resonance, fatigue, and stress resistance at a higher frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.40
自引率
2.50%
发文量
12
审稿时长
6 weeks
期刊介绍: Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.
期刊最新文献
INJURY FREQUENCY IN ARTISTIC GYMNASTICS – A SYSTEMATIC REVIEW A HYBRID DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS IN PRODUCT REVIEWS A NOVEL DISCRETE RAT SWARM OPTIMIZATION ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM INVESTIGATION OF INDUSTRY 5.0 HURDLES AND THEIR MITIGATION TACTICS IN EMERGING ECONOMIES BY TODIM ARITHMETIC AND GEOMETRIC AGGREGATION OPERATORS IN SINGLE VALUE NEUTROSOPHIC ENVIRONMENT COMPLEX INTUITIONISTIC FUZZY DOMBI PRIORITIZED AGGREGATION OPERATORS AND THEIR APPLICATION FOR RESILIENT GREEN SUPPLIER SELECTION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1