利用超顺磁性纳米颗粒局部加热肿瘤细胞

Hao-Yu Tseng, Chen-Yi Lee, Y. Shih, Xi-Zhang Lin, Gwo-Bin Lee
{"title":"利用超顺磁性纳米颗粒局部加热肿瘤细胞","authors":"Hao-Yu Tseng, Chen-Yi Lee, Y. Shih, Xi-Zhang Lin, Gwo-Bin Lee","doi":"10.1109/NANO.2007.4601345","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation of hyperthermia cancer therapy utilizing high-frequency magnetic field to induce a localized temperature increase on tumors by using superparamagnetic nanoparticles. In-vitro and in-vivo experiments showed the feasibility of hyperthermia cancer therapy. The relationship between temperature rise and cell survival rate was also investigated. While CT-26 colon cancer cells were heated above 45degC, the survival rate of cancer cells would be greatly reduced. A temperature increase as high as 59.5degC can be successfully generated in rat livers. In-vivo tests also indicated that hyperthermia cancer therapy using this approach could significantly suppress the growth rate of tumors by utilizing concentrated magnetic nanoparticles and temperature-sensitive hydrogel, which was used to secure the nanoparticles in the target tumor tissue. Furthermore, a feedback temperature control system was successfully developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy is feasible. The developed technique may be promising for the hyperthermia cancer therapy.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"76 1","pages":"969-974"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localized heating of tumor cells utilizing superparamagnetic nanoparticles\",\"authors\":\"Hao-Yu Tseng, Chen-Yi Lee, Y. Shih, Xi-Zhang Lin, Gwo-Bin Lee\",\"doi\":\"10.1109/NANO.2007.4601345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation of hyperthermia cancer therapy utilizing high-frequency magnetic field to induce a localized temperature increase on tumors by using superparamagnetic nanoparticles. In-vitro and in-vivo experiments showed the feasibility of hyperthermia cancer therapy. The relationship between temperature rise and cell survival rate was also investigated. While CT-26 colon cancer cells were heated above 45degC, the survival rate of cancer cells would be greatly reduced. A temperature increase as high as 59.5degC can be successfully generated in rat livers. In-vivo tests also indicated that hyperthermia cancer therapy using this approach could significantly suppress the growth rate of tumors by utilizing concentrated magnetic nanoparticles and temperature-sensitive hydrogel, which was used to secure the nanoparticles in the target tumor tissue. Furthermore, a feedback temperature control system was successfully developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy is feasible. The developed technique may be promising for the hyperthermia cancer therapy.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"76 1\",\"pages\":\"969-974\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种利用超顺磁性纳米颗粒,利用高频磁场诱导肿瘤局部温度升高的热疗癌症治疗方法。体外和体内实验证明了热疗治疗癌症的可行性。研究了温度升高与细胞存活率的关系。当CT-26结肠癌细胞加热到45℃以上时,癌细胞的存活率会大大降低。老鼠的肝脏可以成功地产生高达59.5摄氏度的温度升高。体内试验还表明,采用这种方法的热疗癌症治疗可以显著抑制肿瘤的生长速度,通过使用浓缩的磁性纳米颗粒和温度敏感的水凝胶,将纳米颗粒固定在目标肿瘤组织中。此外,他们还成功开发了一种反馈温度控制系统,使纳米颗粒保持在恒定的温度,以防止肿瘤过热,从而使更安全、更精确的癌症治疗成为可能。该技术在热疗癌症治疗中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localized heating of tumor cells utilizing superparamagnetic nanoparticles
This paper presents an investigation of hyperthermia cancer therapy utilizing high-frequency magnetic field to induce a localized temperature increase on tumors by using superparamagnetic nanoparticles. In-vitro and in-vivo experiments showed the feasibility of hyperthermia cancer therapy. The relationship between temperature rise and cell survival rate was also investigated. While CT-26 colon cancer cells were heated above 45degC, the survival rate of cancer cells would be greatly reduced. A temperature increase as high as 59.5degC can be successfully generated in rat livers. In-vivo tests also indicated that hyperthermia cancer therapy using this approach could significantly suppress the growth rate of tumors by utilizing concentrated magnetic nanoparticles and temperature-sensitive hydrogel, which was used to secure the nanoparticles in the target tumor tissue. Furthermore, a feedback temperature control system was successfully developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy is feasible. The developed technique may be promising for the hyperthermia cancer therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schrödinger Equation Monte Carlo-3D for simulation of nanoscale MOSFETs Young's Modulus of High Aspect Ratio Si3N4 Nano-thickness Membrane Quantum well nanomechanical actuators with atomic vertical resolution Study of nanopattern forming with chemical coatings for silicon-based stamp in nanoimprint process Surface energy induced patterning of polymer nanostructures for cancer diagnosis and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1