从基于网络的高通量基因组分析平台Galaxy获得的经验教训

Jeremy Goecks, The Galaxy Team, A. Nekrutenko, James Taylor
{"title":"从基于网络的高通量基因组分析平台Galaxy获得的经验教训","authors":"Jeremy Goecks, The Galaxy Team, A. Nekrutenko, James Taylor","doi":"10.1109/ESCIENCE.2012.6404442","DOIUrl":null,"url":null,"abstract":"High throughput sequencing assays have given rise to the field of genomics and transformed biomedical research into a computational science. Due to the large size of genomics datasets, high-performance computing is essential for analysis. Galaxy (http://galaxyproject.org) is a popular Web-based platform that can be used for all facets of genomic analyses, including data retrieval and integration, multi-step analysis, repeated analyses via workflows, visualization, collaboration, and publication. This paper describes Galaxy and discusses four lessons learned from the development of Galaxy. First, Galaxy uses open, extensible frameworks so that it can be adapted to new technologies as they become available. Second, by leveraging Web technologies, Galaxy makes genomics tools accessible to everyone and provides a common platform for collaboration. Third, Galaxy fosters community amongst both developers and users and encourages each community to adapt and extend Galaxy to meet their needs. Finally, Galaxy software development and genomic research are closely coupled, and challenges encountered during genomic research drive Galaxy development.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"51 4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lessons learned from Galaxy, a Web-based platform for high-throughput genomic analyses\",\"authors\":\"Jeremy Goecks, The Galaxy Team, A. Nekrutenko, James Taylor\",\"doi\":\"10.1109/ESCIENCE.2012.6404442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High throughput sequencing assays have given rise to the field of genomics and transformed biomedical research into a computational science. Due to the large size of genomics datasets, high-performance computing is essential for analysis. Galaxy (http://galaxyproject.org) is a popular Web-based platform that can be used for all facets of genomic analyses, including data retrieval and integration, multi-step analysis, repeated analyses via workflows, visualization, collaboration, and publication. This paper describes Galaxy and discusses four lessons learned from the development of Galaxy. First, Galaxy uses open, extensible frameworks so that it can be adapted to new technologies as they become available. Second, by leveraging Web technologies, Galaxy makes genomics tools accessible to everyone and provides a common platform for collaboration. Third, Galaxy fosters community amongst both developers and users and encourages each community to adapt and extend Galaxy to meet their needs. Finally, Galaxy software development and genomic research are closely coupled, and challenges encountered during genomic research drive Galaxy development.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"51 4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCIENCE.2012.6404442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCIENCE.2012.6404442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高通量测序技术使基因组学领域兴起,并将生物医学研究转变为计算科学。由于基因组数据集的庞大规模,高性能计算对于分析是必不可少的。Galaxy (http://galaxyproject.org)是一个流行的基于web的平台,可用于基因组分析的所有方面,包括数据检索和集成、多步骤分析、通过工作流重复分析、可视化、协作和发布。本文介绍了《银河》,并讨论了从《银河》的开发中得到的四点经验教训。首先,Galaxy使用开放的、可扩展的框架,这样它就可以适应新技术。其次,通过利用网络技术,银河使基因组学工具对每个人都可用,并提供了一个共同的合作平台。第三,Galaxy在开发者和用户之间建立社区,并鼓励每个社区调整和扩展Galaxy以满足他们的需求。最后,Galaxy软件开发与基因组研究紧密结合,基因组研究过程中遇到的挑战推动了Galaxy的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lessons learned from Galaxy, a Web-based platform for high-throughput genomic analyses
High throughput sequencing assays have given rise to the field of genomics and transformed biomedical research into a computational science. Due to the large size of genomics datasets, high-performance computing is essential for analysis. Galaxy (http://galaxyproject.org) is a popular Web-based platform that can be used for all facets of genomic analyses, including data retrieval and integration, multi-step analysis, repeated analyses via workflows, visualization, collaboration, and publication. This paper describes Galaxy and discusses four lessons learned from the development of Galaxy. First, Galaxy uses open, extensible frameworks so that it can be adapted to new technologies as they become available. Second, by leveraging Web technologies, Galaxy makes genomics tools accessible to everyone and provides a common platform for collaboration. Third, Galaxy fosters community amongst both developers and users and encourages each community to adapt and extend Galaxy to meet their needs. Finally, Galaxy software development and genomic research are closely coupled, and challenges encountered during genomic research drive Galaxy development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Workflow Interchanging through Patterns: Reversals and Lessons Learned Shape Analysis Using the Spectral Graph Wavelet Transform Provenance analysis: Towards quality provenance Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography Calibration of watershed models using cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1