Shan Peng, Ranran Yang, B. Lei, Yun Gao, Renhua Chen, X. Xia, K. Homewood
{"title":"锆石颜料从坚固固体到透明溶液的封装效率","authors":"Shan Peng, Ranran Yang, B. Lei, Yun Gao, Renhua Chen, X. Xia, K. Homewood","doi":"10.1108/prt-12-2022-0147","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust inorganic pigments, typically like ZrSiO4-based pigments, thereby enhancing their coloring performance.\n\n\nDesign/methodology/approach\nThe authors designed a route, surplus alkali-decomposition and subsequently strong-acid dissolution (SAD2) to completely decompose three classic zircon pigments (Pr–ZrSiO4, Fe2O3@ZrSiO4 and CdS@ZrSiO4) into clear solutions and preferably used inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the concentrations of host elements and chromophores, thereby deriving the numeric data and interrelation of αRe and αAb.\n\n\nFindings\nZircon pigments can be thoroughly decomposed into some dissoluble zirconate–silicate resultants by SAD2 at a ratio of the fluxing agent to pigment over 6. ICP-OES is proved more suitable than some other quantification techniques in deriving the compositional concentrations, thereby the values of αRe and αAb, and their transformation coefficient KRA, which maintains stably within 0.8–0.9 in Fe2O3@ZrSiO4 and CdS@ZrSiO4 and is slightly reduced to 0.67–0.85 in Pr–ZrSiO4.\n\n\nPractical implications\nThe SAD2 method and encapsulation efficiencies are well applicable for both zircon pigments and the other pigmental or non-pigmental inhomogeneous systems in characterizing their accurate composition.\n\n\nOriginality/value\nThe authors herein first proposed strict definitions for the relative and absolute encapsulation efficiencies for inorganic pigments, developed a relatively stringent methodology to determine their accurate values and interrelation.\n","PeriodicalId":20147,"journal":{"name":"Pigment & Resin Technology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The encapsulation efficiency of zircon pigments from robust solids to clear solutions\",\"authors\":\"Shan Peng, Ranran Yang, B. Lei, Yun Gao, Renhua Chen, X. Xia, K. Homewood\",\"doi\":\"10.1108/prt-12-2022-0147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust inorganic pigments, typically like ZrSiO4-based pigments, thereby enhancing their coloring performance.\\n\\n\\nDesign/methodology/approach\\nThe authors designed a route, surplus alkali-decomposition and subsequently strong-acid dissolution (SAD2) to completely decompose three classic zircon pigments (Pr–ZrSiO4, Fe2O3@ZrSiO4 and CdS@ZrSiO4) into clear solutions and preferably used inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the concentrations of host elements and chromophores, thereby deriving the numeric data and interrelation of αRe and αAb.\\n\\n\\nFindings\\nZircon pigments can be thoroughly decomposed into some dissoluble zirconate–silicate resultants by SAD2 at a ratio of the fluxing agent to pigment over 6. ICP-OES is proved more suitable than some other quantification techniques in deriving the compositional concentrations, thereby the values of αRe and αAb, and their transformation coefficient KRA, which maintains stably within 0.8–0.9 in Fe2O3@ZrSiO4 and CdS@ZrSiO4 and is slightly reduced to 0.67–0.85 in Pr–ZrSiO4.\\n\\n\\nPractical implications\\nThe SAD2 method and encapsulation efficiencies are well applicable for both zircon pigments and the other pigmental or non-pigmental inhomogeneous systems in characterizing their accurate composition.\\n\\n\\nOriginality/value\\nThe authors herein first proposed strict definitions for the relative and absolute encapsulation efficiencies for inorganic pigments, developed a relatively stringent methodology to determine their accurate values and interrelation.\\n\",\"PeriodicalId\":20147,\"journal\":{\"name\":\"Pigment & Resin Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pigment & Resin Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/prt-12-2022-0147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pigment & Resin Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/prt-12-2022-0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The encapsulation efficiency of zircon pigments from robust solids to clear solutions
Purpose
This paper aims to systematically demonstrate a methodology to determine the relative and absolute encapsulation efficiencies (αRe and αAb) for thermally- and chemically-robust inorganic pigments, typically like ZrSiO4-based pigments, thereby enhancing their coloring performance.
Design/methodology/approach
The authors designed a route, surplus alkali-decomposition and subsequently strong-acid dissolution (SAD2) to completely decompose three classic zircon pigments (Pr–ZrSiO4, Fe2O3@ZrSiO4 and CdS@ZrSiO4) into clear solutions and preferably used inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine the concentrations of host elements and chromophores, thereby deriving the numeric data and interrelation of αRe and αAb.
Findings
Zircon pigments can be thoroughly decomposed into some dissoluble zirconate–silicate resultants by SAD2 at a ratio of the fluxing agent to pigment over 6. ICP-OES is proved more suitable than some other quantification techniques in deriving the compositional concentrations, thereby the values of αRe and αAb, and their transformation coefficient KRA, which maintains stably within 0.8–0.9 in Fe2O3@ZrSiO4 and CdS@ZrSiO4 and is slightly reduced to 0.67–0.85 in Pr–ZrSiO4.
Practical implications
The SAD2 method and encapsulation efficiencies are well applicable for both zircon pigments and the other pigmental or non-pigmental inhomogeneous systems in characterizing their accurate composition.
Originality/value
The authors herein first proposed strict definitions for the relative and absolute encapsulation efficiencies for inorganic pigments, developed a relatively stringent methodology to determine their accurate values and interrelation.