{"title":"基于熵的增强粒子群算法的多目标软件可靠性模型优化测试资源分配","authors":"P. Rani, G. Mahapatra","doi":"10.1002/stvr.1765","DOIUrl":null,"url":null,"abstract":"This paper proposes a generalization of the exponential software reliability model to characterize several factors including fault introduction and time‐varying fault detection rate. The software life cycle is designed based on module structure such as testing effort spent during module testing and detected software faults etc. The resource allocation problem is a critical phase in the testing stage of software reliability modelling. It is required to make decisions for optimal resource allocation among the modules to achieve the desired level of reliability. We formulate a multi‐objective software reliability model of testing resources for a new generalized exponential reliability function to characterizes dynamic allocation of total expected cost and testing effort. An enhanced particle swarm optimization (EPSO) is proposed to maximize software reliability and minimize allocation cost. We perform experiments with randomly generated testing‐resource sets and varying the performance using the entropy function. The multi‐objective model is compared with modules according to weighted cost function and testing effort measures in a typical modular testing environment.","PeriodicalId":49506,"journal":{"name":"Software Testing Verification & Reliability","volume":"137 3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Entropy based enhanced particle swarm optimization on multi‐objective software reliability modelling for optimal testing resources allocation\",\"authors\":\"P. Rani, G. Mahapatra\",\"doi\":\"10.1002/stvr.1765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a generalization of the exponential software reliability model to characterize several factors including fault introduction and time‐varying fault detection rate. The software life cycle is designed based on module structure such as testing effort spent during module testing and detected software faults etc. The resource allocation problem is a critical phase in the testing stage of software reliability modelling. It is required to make decisions for optimal resource allocation among the modules to achieve the desired level of reliability. We formulate a multi‐objective software reliability model of testing resources for a new generalized exponential reliability function to characterizes dynamic allocation of total expected cost and testing effort. An enhanced particle swarm optimization (EPSO) is proposed to maximize software reliability and minimize allocation cost. We perform experiments with randomly generated testing‐resource sets and varying the performance using the entropy function. The multi‐objective model is compared with modules according to weighted cost function and testing effort measures in a typical modular testing environment.\",\"PeriodicalId\":49506,\"journal\":{\"name\":\"Software Testing Verification & Reliability\",\"volume\":\"137 3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Testing Verification & Reliability\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/stvr.1765\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Testing Verification & Reliability","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/stvr.1765","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Entropy based enhanced particle swarm optimization on multi‐objective software reliability modelling for optimal testing resources allocation
This paper proposes a generalization of the exponential software reliability model to characterize several factors including fault introduction and time‐varying fault detection rate. The software life cycle is designed based on module structure such as testing effort spent during module testing and detected software faults etc. The resource allocation problem is a critical phase in the testing stage of software reliability modelling. It is required to make decisions for optimal resource allocation among the modules to achieve the desired level of reliability. We formulate a multi‐objective software reliability model of testing resources for a new generalized exponential reliability function to characterizes dynamic allocation of total expected cost and testing effort. An enhanced particle swarm optimization (EPSO) is proposed to maximize software reliability and minimize allocation cost. We perform experiments with randomly generated testing‐resource sets and varying the performance using the entropy function. The multi‐objective model is compared with modules according to weighted cost function and testing effort measures in a typical modular testing environment.
期刊介绍:
The journal is the premier outlet for research results on the subjects of testing, verification and reliability. Readers will find useful research on issues pertaining to building better software and evaluating it.
The journal is unique in its emphasis on theoretical foundations and applications to real-world software development. The balance of theory, empirical work, and practical applications provide readers with better techniques for testing, verifying and improving the reliability of software.
The journal targets researchers, practitioners, educators and students that have a vested interest in results generated by high-quality testing, verification and reliability modeling and evaluation of software. Topics of special interest include, but are not limited to:
-New criteria for software testing and verification
-Application of existing software testing and verification techniques to new types of software, including web applications, web services, embedded software, aspect-oriented software, and software architectures
-Model based testing
-Formal verification techniques such as model-checking
-Comparison of testing and verification techniques
-Measurement of and metrics for testing, verification and reliability
-Industrial experience with cutting edge techniques
-Descriptions and evaluations of commercial and open-source software testing tools
-Reliability modeling, measurement and application
-Testing and verification of software security
-Automated test data generation
-Process issues and methods
-Non-functional testing