G. Vanithakumari, S. Asha, T. Mathavan, Jothi Rajan Ma
{"title":"光动力用果胶功能化双金属银/金纳米粒子的合成与表征","authors":"G. Vanithakumari, S. Asha, T. Mathavan, Jothi Rajan Ma","doi":"10.4172/2161-0398.1000221","DOIUrl":null,"url":null,"abstract":"Over the last decade, nanotechnologyhas become one of the most energetic evolving areas in research field. The astonishing properties of nanostructured materials are utilized in many field of research like energy, electronics and medicines. In this work, Functionalized silver, gold and Bimetallic Silver/Gold nanoparticles were prepared through chemical reduction in aqueous solution, following a method that was affable to the environment; this work will be stretching for photodynamic activities. AgNO3 and HAuCl4 were reduced using in-situ techniques in the presence of pectin and folic acid. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined from UV-Vis spectroscopy analysis, and the values obtained for silver and gold were approximately 350 nm and 543 nm in wavelength respectively. The absorption peaks of the surface plasmon band show a shift due to the size effect of the nanoparticles. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained through dynamic light scattering. To obtain a better understanding of the functionalization and conjugation conditions, High-resolution transmission electron microscopy has been used. The development of this process, which is compassionate for the environment, opens the possibility for many applications in the field of photodynamic applications.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Synthesis and Characterization of Pectin Functionalized Bimetallic Silver/ Gold Nanoparticles for Photodynamic Applications\",\"authors\":\"G. Vanithakumari, S. Asha, T. Mathavan, Jothi Rajan Ma\",\"doi\":\"10.4172/2161-0398.1000221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last decade, nanotechnologyhas become one of the most energetic evolving areas in research field. The astonishing properties of nanostructured materials are utilized in many field of research like energy, electronics and medicines. In this work, Functionalized silver, gold and Bimetallic Silver/Gold nanoparticles were prepared through chemical reduction in aqueous solution, following a method that was affable to the environment; this work will be stretching for photodynamic activities. AgNO3 and HAuCl4 were reduced using in-situ techniques in the presence of pectin and folic acid. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined from UV-Vis spectroscopy analysis, and the values obtained for silver and gold were approximately 350 nm and 543 nm in wavelength respectively. The absorption peaks of the surface plasmon band show a shift due to the size effect of the nanoparticles. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained through dynamic light scattering. To obtain a better understanding of the functionalization and conjugation conditions, High-resolution transmission electron microscopy has been used. The development of this process, which is compassionate for the environment, opens the possibility for many applications in the field of photodynamic applications.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of Pectin Functionalized Bimetallic Silver/ Gold Nanoparticles for Photodynamic Applications
Over the last decade, nanotechnologyhas become one of the most energetic evolving areas in research field. The astonishing properties of nanostructured materials are utilized in many field of research like energy, electronics and medicines. In this work, Functionalized silver, gold and Bimetallic Silver/Gold nanoparticles were prepared through chemical reduction in aqueous solution, following a method that was affable to the environment; this work will be stretching for photodynamic activities. AgNO3 and HAuCl4 were reduced using in-situ techniques in the presence of pectin and folic acid. Using the optical properties of metallic nanoparticles, surface plasmon resonance was determined from UV-Vis spectroscopy analysis, and the values obtained for silver and gold were approximately 350 nm and 543 nm in wavelength respectively. The absorption peaks of the surface plasmon band show a shift due to the size effect of the nanoparticles. The average hydrodynamic size and the size distribution of the synthesized nanoparticles were obtained through dynamic light scattering. To obtain a better understanding of the functionalization and conjugation conditions, High-resolution transmission electron microscopy has been used. The development of this process, which is compassionate for the environment, opens the possibility for many applications in the field of photodynamic applications.