S. A. Moshizi, Shohreh Azadi, Andrew Belford, Shuying Wu, Z. J. Han, M. Asadnia
{"title":"使用先进的二维材料紧密模拟前庭毛细胞传感器","authors":"S. A. Moshizi, Shohreh Azadi, Andrew Belford, Shuying Wu, Z. J. Han, M. Asadnia","doi":"10.1109/Transducers50396.2021.9495755","DOIUrl":null,"url":null,"abstract":"In this work, an ultra-sensitive flow sensor is presented, consisting of vertically grown graphene nanosheets (VGNs) with a mazelike structure and an elastomer (polydimethylsiloxane, PDMS). The VGNs/PDMS piezoresistive flow sensor exhibits great linearity, low-velocity detection threshold (1.127 mm/s) and super-high sensitivity under exposure to stationary flow (0.127 kΩ/(mL/min)). The proposed flow sensor, analogous to hair cells in the vestibular system, was embedded in a 3D-printed lateral semicircular canal, and the sensing performance was studied in response to various physiological movements. This work paves the way for development of physical sensors using novel two-dimensional (2D) materials for various biomedical applications.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"103 1","pages":"739-742"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Advanced 2D Materials to Closely Mimic Vestibular Hair Cell Sensors\",\"authors\":\"S. A. Moshizi, Shohreh Azadi, Andrew Belford, Shuying Wu, Z. J. Han, M. Asadnia\",\"doi\":\"10.1109/Transducers50396.2021.9495755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an ultra-sensitive flow sensor is presented, consisting of vertically grown graphene nanosheets (VGNs) with a mazelike structure and an elastomer (polydimethylsiloxane, PDMS). The VGNs/PDMS piezoresistive flow sensor exhibits great linearity, low-velocity detection threshold (1.127 mm/s) and super-high sensitivity under exposure to stationary flow (0.127 kΩ/(mL/min)). The proposed flow sensor, analogous to hair cells in the vestibular system, was embedded in a 3D-printed lateral semicircular canal, and the sensing performance was studied in response to various physiological movements. This work paves the way for development of physical sensors using novel two-dimensional (2D) materials for various biomedical applications.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"103 1\",\"pages\":\"739-742\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Advanced 2D Materials to Closely Mimic Vestibular Hair Cell Sensors
In this work, an ultra-sensitive flow sensor is presented, consisting of vertically grown graphene nanosheets (VGNs) with a mazelike structure and an elastomer (polydimethylsiloxane, PDMS). The VGNs/PDMS piezoresistive flow sensor exhibits great linearity, low-velocity detection threshold (1.127 mm/s) and super-high sensitivity under exposure to stationary flow (0.127 kΩ/(mL/min)). The proposed flow sensor, analogous to hair cells in the vestibular system, was embedded in a 3D-printed lateral semicircular canal, and the sensing performance was studied in response to various physiological movements. This work paves the way for development of physical sensors using novel two-dimensional (2D) materials for various biomedical applications.