高k/金属栅MOS电容器的微波后退火研究

Yin-Hsien Su, T. Kuo, Wen-Hsi Lee, Yao-Ren Lee
{"title":"高k/金属栅MOS电容器的微波后退火研究","authors":"Yin-Hsien Su, T. Kuo, Wen-Hsi Lee, Yao-Ren Lee","doi":"10.1109/NANO.2016.7751519","DOIUrl":null,"url":null,"abstract":"MOSFETs with high-k and metal gate materials have been adopted nowadays. However, using traditional rapid thermal annealing as the annealing process after metal deposition causes thick SiO2 inter-layers and large flat-band shift. For future processes, an alternative post-metal annealing method has to be found. This study investigated electrical characteristics and physical properties of TiN/Al/TiN/HfO2/Si MOS capacitors annealed with a microwave annealing technique. The results show that samples annealed by microwave annealing at 2700W demonstrate low equivalent oxide thickness, low interface states density and low oxide trapped charge density. Besides, the diffusion of Al into oxides films is also suppressed. As a result, for high-k/metal gate MOS capacitors, high oxide capacitance, high breakdown voltage and low leakage current can be obtained using microwave annealing.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"15 1","pages":"773-776"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of high-k/metal gate MOS capacitors annealed by microwave annealing as a post-metal annealing process\",\"authors\":\"Yin-Hsien Su, T. Kuo, Wen-Hsi Lee, Yao-Ren Lee\",\"doi\":\"10.1109/NANO.2016.7751519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOSFETs with high-k and metal gate materials have been adopted nowadays. However, using traditional rapid thermal annealing as the annealing process after metal deposition causes thick SiO2 inter-layers and large flat-band shift. For future processes, an alternative post-metal annealing method has to be found. This study investigated electrical characteristics and physical properties of TiN/Al/TiN/HfO2/Si MOS capacitors annealed with a microwave annealing technique. The results show that samples annealed by microwave annealing at 2700W demonstrate low equivalent oxide thickness, low interface states density and low oxide trapped charge density. Besides, the diffusion of Al into oxides films is also suppressed. As a result, for high-k/metal gate MOS capacitors, high oxide capacitance, high breakdown voltage and low leakage current can be obtained using microwave annealing.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"15 1\",\"pages\":\"773-776\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前已采用高k和金属栅极材料的mosfet。然而,采用传统的快速热退火作为金属沉积后的退火工艺,会导致SiO2间层较厚、平带位移较大。对于未来的工艺,必须找到一种替代的金属后退火方法。研究了用微波退火技术退火TiN/Al/TiN/HfO2/Si MOS电容器的电学特性和物理性能。结果表明:经2700W微波退火后的样品具有较低的等效氧化物厚度、较低的界面态密度和较低的氧化物俘获电荷密度;此外,Al在氧化物膜中的扩散也受到抑制。因此,对于高k/金属栅MOS电容器,采用微波退火可以获得高氧化电容、高击穿电压和低漏电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of high-k/metal gate MOS capacitors annealed by microwave annealing as a post-metal annealing process
MOSFETs with high-k and metal gate materials have been adopted nowadays. However, using traditional rapid thermal annealing as the annealing process after metal deposition causes thick SiO2 inter-layers and large flat-band shift. For future processes, an alternative post-metal annealing method has to be found. This study investigated electrical characteristics and physical properties of TiN/Al/TiN/HfO2/Si MOS capacitors annealed with a microwave annealing technique. The results show that samples annealed by microwave annealing at 2700W demonstrate low equivalent oxide thickness, low interface states density and low oxide trapped charge density. Besides, the diffusion of Al into oxides films is also suppressed. As a result, for high-k/metal gate MOS capacitors, high oxide capacitance, high breakdown voltage and low leakage current can be obtained using microwave annealing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer coated nanorobot end-effector for efficient drug delivery A three-dimensional ZnO nanowires photodetector Relationship between electric properties and surface flatness of (ZnO)x(InN)1−x films on ZnO templates Inter-particle potential fluctuation of two fine particles suspended in Ar plasmas Study of γ-Fe2O3/Au core/shell nanoparticles as the contrast agent for high-Tc SQUID-based low field nuclear magnetic resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1