脉冲电晕放电水处理

IF 0.1 Q4 PHYSICS, MULTIDISCIPLINARY Anales AFA Pub Date : 2022-08-16 DOI:10.31527/analesafa.2022.fluidos.11
M. Ferreyra, B. Fina, N. Milardovich, J. Chamorro, B. Santamaria, L. Prevosto
{"title":"脉冲电晕放电水处理","authors":"M. Ferreyra, B. Fina, N. Milardovich, J. Chamorro, B. Santamaria, L. Prevosto","doi":"10.31527/analesafa.2022.fluidos.11","DOIUrl":null,"url":null,"abstract":"One of the fastest growing technological applications in recent years in the area of non-thermal plasmas is the treatment of water with discharges in (and in contact with) liquids. Reactive chemical species are generated in the plasma in the gas phase and enter the liquid by diffusion or are generated at the gas-liquid interface, thus changing its physicochemical properties, without the addition of external chemical compounds. Depending on the form of application of the plasma, well-differentiated effects can be achieved: on the one hand, the purification of water through the degradation of organic pollutants, and on the other, its activation, through long-lived reactive species, for later use in seeds and food treatments. In this work, the first results obtained in the water treated with a pulsed corona discharge under different exposure times are reported. In particular, measurement results of indigo carmine degradation; electric conductivity; pH; aqueous concentrations of reactive species, such as nitrate, nitrite, hydrogen peroxide and ozone, are reported. The results are discussed and compared with published data.","PeriodicalId":41478,"journal":{"name":"Anales AFA","volume":"78 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WATER TREATMENT WITH A PULSED CORONA DISCHARGE\",\"authors\":\"M. Ferreyra, B. Fina, N. Milardovich, J. Chamorro, B. Santamaria, L. Prevosto\",\"doi\":\"10.31527/analesafa.2022.fluidos.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the fastest growing technological applications in recent years in the area of non-thermal plasmas is the treatment of water with discharges in (and in contact with) liquids. Reactive chemical species are generated in the plasma in the gas phase and enter the liquid by diffusion or are generated at the gas-liquid interface, thus changing its physicochemical properties, without the addition of external chemical compounds. Depending on the form of application of the plasma, well-differentiated effects can be achieved: on the one hand, the purification of water through the degradation of organic pollutants, and on the other, its activation, through long-lived reactive species, for later use in seeds and food treatments. In this work, the first results obtained in the water treated with a pulsed corona discharge under different exposure times are reported. In particular, measurement results of indigo carmine degradation; electric conductivity; pH; aqueous concentrations of reactive species, such as nitrate, nitrite, hydrogen peroxide and ozone, are reported. The results are discussed and compared with published data.\",\"PeriodicalId\":41478,\"journal\":{\"name\":\"Anales AFA\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anales AFA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31527/analesafa.2022.fluidos.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales AFA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31527/analesafa.2022.fluidos.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在非热等离子体领域发展最快的技术应用之一是处理在液体中(或与液体接触)排放的水。反应性化学物质在气相等离子体中产生,通过扩散进入液体或在气液界面产生,从而改变其物理化学性质,而不需要外部化合物的加入。根据等离子体的应用形式,可以实现不同的效果:一方面,通过降解有机污染物来净化水,另一方面,通过长寿命的活性物质来激活水,以便以后用于种子和食品处理。本文报道了脉冲电晕放电处理水在不同曝光时间下的初步结果。特别是靛蓝胭脂红降解的测量结果;电导率;pH值;报道了硝酸盐、亚硝酸盐、过氧化氢和臭氧等活性物质的水溶液浓度。对所得结果进行了讨论,并与已发表的数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WATER TREATMENT WITH A PULSED CORONA DISCHARGE
One of the fastest growing technological applications in recent years in the area of non-thermal plasmas is the treatment of water with discharges in (and in contact with) liquids. Reactive chemical species are generated in the plasma in the gas phase and enter the liquid by diffusion or are generated at the gas-liquid interface, thus changing its physicochemical properties, without the addition of external chemical compounds. Depending on the form of application of the plasma, well-differentiated effects can be achieved: on the one hand, the purification of water through the degradation of organic pollutants, and on the other, its activation, through long-lived reactive species, for later use in seeds and food treatments. In this work, the first results obtained in the water treated with a pulsed corona discharge under different exposure times are reported. In particular, measurement results of indigo carmine degradation; electric conductivity; pH; aqueous concentrations of reactive species, such as nitrate, nitrite, hydrogen peroxide and ozone, are reported. The results are discussed and compared with published data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anales AFA
Anales AFA PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.40
自引率
0.00%
发文量
43
期刊最新文献
COPPER NANOPARTICLES FOR IONIZING RADIATION DOSIMETRY FOR THERANOSTICS THE INERTIA OF LIGHT. VERIFICATION OF NEWTON’S SECOND LAW BY A CONFINED FLOW OF RADIATION IN A REFLECTIVE CAVITY EFFECT OF INTENSE MAGNETIC FIELDS ON THE TRAJECTORY OF ELECTRONSPROPAGATING IN LOW DENSITY MEDIA OF INTEREST FOR MRI-LINAC RADIOTHERAPY 22C GROUND STATE DESCRIPTION EVALUATION OF THE HELIOSAT-4 AND MCCLEAR MODELS FOR SOLAR GLOBALIRRADIATION ESTIMATE AT TWO SITES IN ARGENTINA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1