P. Sangeetha, K. MaitiS., D. Mohan, S. Shivaraju, R. Raguvaran, Malik Abu Rafee, Bindhuja Bv, Naveen Kumar, Raguvanshi Pds
{"title":"大鼠骨髓间充质干细胞:分离、扩增和分化技术","authors":"P. Sangeetha, K. MaitiS., D. Mohan, S. Shivaraju, R. Raguvaran, Malik Abu Rafee, Bindhuja Bv, Naveen Kumar, Raguvanshi Pds","doi":"10.15406/JSRT.2017.03.00101","DOIUrl":null,"url":null,"abstract":"In the past decade, the field of stem cells and cell-based therapies has undergone a remarkable evolution. The potential of stem cell to differentiate into various types of cells has revolutionized their use in clinics for the treatment of a variety of clinical conditions. Mesenchymal stem cells can be cultured and grown for many generations under appropriate conditions in the laboratory and still retain a stable morphology and chromosome complement [1]. Bone marrow obtained mesenchymal stem cells are the most studied stem cell type that is capable of differentiating into variety of cell lineages. Differences in differentiation ability to osteogenic, chondrogenic and adipogenic lineages of MSCs harvested from Murine species of various age groups and the number of passage of these cultured cells has been reported. Osteogenic and chondrogenic potential reduced with each and every age group and adipogenic differentiation ability reduced only in cells obtained from oldest donors [2]. The technique of bone marrow collection and stem cell culture vary for different species [3]. Culturing of rodent bone marrow derived stem cell is a little bit difficult when compared to its human counterpart [4]. Here we described a simple and easy technique of stem cells isolation and differentiation from adult Wistar rats.","PeriodicalId":91560,"journal":{"name":"Journal of stem cell research & therapeutics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mesenchymal stem cells derived from rat bone marrow (rbm msc): techniques for isolation, expansion and differentiation\",\"authors\":\"P. Sangeetha, K. MaitiS., D. Mohan, S. Shivaraju, R. Raguvaran, Malik Abu Rafee, Bindhuja Bv, Naveen Kumar, Raguvanshi Pds\",\"doi\":\"10.15406/JSRT.2017.03.00101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, the field of stem cells and cell-based therapies has undergone a remarkable evolution. The potential of stem cell to differentiate into various types of cells has revolutionized their use in clinics for the treatment of a variety of clinical conditions. Mesenchymal stem cells can be cultured and grown for many generations under appropriate conditions in the laboratory and still retain a stable morphology and chromosome complement [1]. Bone marrow obtained mesenchymal stem cells are the most studied stem cell type that is capable of differentiating into variety of cell lineages. Differences in differentiation ability to osteogenic, chondrogenic and adipogenic lineages of MSCs harvested from Murine species of various age groups and the number of passage of these cultured cells has been reported. Osteogenic and chondrogenic potential reduced with each and every age group and adipogenic differentiation ability reduced only in cells obtained from oldest donors [2]. The technique of bone marrow collection and stem cell culture vary for different species [3]. Culturing of rodent bone marrow derived stem cell is a little bit difficult when compared to its human counterpart [4]. Here we described a simple and easy technique of stem cells isolation and differentiation from adult Wistar rats.\",\"PeriodicalId\":91560,\"journal\":{\"name\":\"Journal of stem cell research & therapeutics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of stem cell research & therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/JSRT.2017.03.00101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of stem cell research & therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/JSRT.2017.03.00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesenchymal stem cells derived from rat bone marrow (rbm msc): techniques for isolation, expansion and differentiation
In the past decade, the field of stem cells and cell-based therapies has undergone a remarkable evolution. The potential of stem cell to differentiate into various types of cells has revolutionized their use in clinics for the treatment of a variety of clinical conditions. Mesenchymal stem cells can be cultured and grown for many generations under appropriate conditions in the laboratory and still retain a stable morphology and chromosome complement [1]. Bone marrow obtained mesenchymal stem cells are the most studied stem cell type that is capable of differentiating into variety of cell lineages. Differences in differentiation ability to osteogenic, chondrogenic and adipogenic lineages of MSCs harvested from Murine species of various age groups and the number of passage of these cultured cells has been reported. Osteogenic and chondrogenic potential reduced with each and every age group and adipogenic differentiation ability reduced only in cells obtained from oldest donors [2]. The technique of bone marrow collection and stem cell culture vary for different species [3]. Culturing of rodent bone marrow derived stem cell is a little bit difficult when compared to its human counterpart [4]. Here we described a simple and easy technique of stem cells isolation and differentiation from adult Wistar rats.