{"title":"连接到运行中的区域供热管网的监测管道的管道轴向位移分析","authors":"S. Hay, I. Weidlich, I. Wolf, F. Villalobos","doi":"10.1680/jener.21.00100","DOIUrl":null,"url":null,"abstract":"The development of a monitored district heating piping system has allowed the study of axial displacement variations in a buried pipeline. This piping system includes four instrumented sections of piping within an in use district heating network. There are also different conditions under testing such as thickness of expansion cushions, temperature ranges and bedding soil types. The pipe axial displacements were on-line monitored by means of extensometers in six positions along each of the four sections of the pipeline. Measured maximum pipe axial displacements were 24 and 25 mm in the corners of the 41 m long monitored pipelines, while estimated values were 23 mm using current recommendation procedures and 27 mm using calibrated commercial computer programs. One temperature unloading-reloading caused displacements to not return to the same values as before, but around 3 mm smaller. Therefore, several unloading-reloading temperature cycles may affect the pipe deformation behaviour in the short and long term.","PeriodicalId":48776,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Energy","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of pipe axial displacements from a monitored pipeline connected to an operating district heating network\",\"authors\":\"S. Hay, I. Weidlich, I. Wolf, F. Villalobos\",\"doi\":\"10.1680/jener.21.00100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a monitored district heating piping system has allowed the study of axial displacement variations in a buried pipeline. This piping system includes four instrumented sections of piping within an in use district heating network. There are also different conditions under testing such as thickness of expansion cushions, temperature ranges and bedding soil types. The pipe axial displacements were on-line monitored by means of extensometers in six positions along each of the four sections of the pipeline. Measured maximum pipe axial displacements were 24 and 25 mm in the corners of the 41 m long monitored pipelines, while estimated values were 23 mm using current recommendation procedures and 27 mm using calibrated commercial computer programs. One temperature unloading-reloading caused displacements to not return to the same values as before, but around 3 mm smaller. Therefore, several unloading-reloading temperature cycles may affect the pipe deformation behaviour in the short and long term.\",\"PeriodicalId\":48776,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jener.21.00100\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jener.21.00100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Analysis of pipe axial displacements from a monitored pipeline connected to an operating district heating network
The development of a monitored district heating piping system has allowed the study of axial displacement variations in a buried pipeline. This piping system includes four instrumented sections of piping within an in use district heating network. There are also different conditions under testing such as thickness of expansion cushions, temperature ranges and bedding soil types. The pipe axial displacements were on-line monitored by means of extensometers in six positions along each of the four sections of the pipeline. Measured maximum pipe axial displacements were 24 and 25 mm in the corners of the 41 m long monitored pipelines, while estimated values were 23 mm using current recommendation procedures and 27 mm using calibrated commercial computer programs. One temperature unloading-reloading caused displacements to not return to the same values as before, but around 3 mm smaller. Therefore, several unloading-reloading temperature cycles may affect the pipe deformation behaviour in the short and long term.
期刊介绍:
Energy addresses the challenges of energy engineering in the 21st century. The journal publishes groundbreaking papers on energy provision by leading figures in industry and academia and provides a unique forum for discussion on everything from underground coal gasification to the practical implications of biofuels. The journal is a key resource for engineers and researchers working to meet the challenges of energy engineering. Topics addressed include: development of sustainable energy policy, energy efficiency in buildings, infrastructure and transport systems, renewable energy sources, operation and decommissioning of projects, and energy conservation.