在妇科使用3D打印技术的个体化医疗:范围综述。

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2023-03-17 DOI:10.1186/s41205-023-00169-9
Carly M Cooke, Teresa E Flaxman, Lindsey Sikora, Olivier Miguel, Sukhbir S Singh
{"title":"在妇科使用3D打印技术的个体化医疗:范围综述。","authors":"Carly M Cooke,&nbsp;Teresa E Flaxman,&nbsp;Lindsey Sikora,&nbsp;Olivier Miguel,&nbsp;Sukhbir S Singh","doi":"10.1186/s41205-023-00169-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Developments in 3-dimensional (3D) printing technology has made it possible to produce high quality, affordable 3D printed models for use in medicine. As a result, there is a growing assessment of this approach being published in the medical literature. The objective of this study was to outline the clinical applications of individualized 3D printing in gynecology through a scoping review.</p><p><strong>Data sources: </strong>Four medical databases (Medline, Embase, Cochrane CENTRAL, Scopus) and grey literature were searched for publications meeting eligibility criteria up to 31 May 2021.</p><p><strong>Study eligibility criteria: </strong>Publications were included if they were published in English, had a gynecologic context, and involved production of patient specific 3D printed product(s).</p><p><strong>Study appraisal and synthesis methods: </strong>Studies were manually screened and assessed for eligibility by two independent reviewers and data were extracted using pre-established criteria using Covidence software.</p><p><strong>Results: </strong>Overall, 32 studies (15 abstracts,17 full text articles) were included in the scoping review. Most studies were either case reports (12/32,38%) or case series (15/32,47%). Gynecologic sub-specialties in which the 3D printed models were intended for use included: gynecologic oncology (21/32,66%), benign gynecology (6/32,19%), pediatrics (2/32,6%), urogynecology (2/32,6%) and reproductive endocrinology and infertility (1/32,3%). Twenty studies (63%) printed 5 or less models, 6/32 studies (19%) printed greater than 5 (up to 50 models). Types of 3D models printed included: anatomical models (11/32,34%), medical devices, (2/32,6%) and template/guide/cylindrical applicators for brachytherapy (19/32,59%).</p><p><strong>Conclusions: </strong>Our scoping review has outlined novel clinical applications for individualized 3D printed models in gynecology. To date, they have mainly been used for production of patient specific 3D printed brachytherapy guides/applicators in patients with gynecologic cancer. However, individualized 3D printing shows great promise for utility in surgical planning, surgical education, and production of patient specific devices, across gynecologic subspecialties. Evidence supporting the clinical value of individualized 3D printing in gynecology is limited by studies with small sample size and non-standardized reporting, which should be the focus of future studies.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Individualized medicine using 3D printing technology in gynecology: a scoping review.\",\"authors\":\"Carly M Cooke,&nbsp;Teresa E Flaxman,&nbsp;Lindsey Sikora,&nbsp;Olivier Miguel,&nbsp;Sukhbir S Singh\",\"doi\":\"10.1186/s41205-023-00169-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Developments in 3-dimensional (3D) printing technology has made it possible to produce high quality, affordable 3D printed models for use in medicine. As a result, there is a growing assessment of this approach being published in the medical literature. The objective of this study was to outline the clinical applications of individualized 3D printing in gynecology through a scoping review.</p><p><strong>Data sources: </strong>Four medical databases (Medline, Embase, Cochrane CENTRAL, Scopus) and grey literature were searched for publications meeting eligibility criteria up to 31 May 2021.</p><p><strong>Study eligibility criteria: </strong>Publications were included if they were published in English, had a gynecologic context, and involved production of patient specific 3D printed product(s).</p><p><strong>Study appraisal and synthesis methods: </strong>Studies were manually screened and assessed for eligibility by two independent reviewers and data were extracted using pre-established criteria using Covidence software.</p><p><strong>Results: </strong>Overall, 32 studies (15 abstracts,17 full text articles) were included in the scoping review. Most studies were either case reports (12/32,38%) or case series (15/32,47%). Gynecologic sub-specialties in which the 3D printed models were intended for use included: gynecologic oncology (21/32,66%), benign gynecology (6/32,19%), pediatrics (2/32,6%), urogynecology (2/32,6%) and reproductive endocrinology and infertility (1/32,3%). Twenty studies (63%) printed 5 or less models, 6/32 studies (19%) printed greater than 5 (up to 50 models). Types of 3D models printed included: anatomical models (11/32,34%), medical devices, (2/32,6%) and template/guide/cylindrical applicators for brachytherapy (19/32,59%).</p><p><strong>Conclusions: </strong>Our scoping review has outlined novel clinical applications for individualized 3D printed models in gynecology. To date, they have mainly been used for production of patient specific 3D printed brachytherapy guides/applicators in patients with gynecologic cancer. However, individualized 3D printing shows great promise for utility in surgical planning, surgical education, and production of patient specific devices, across gynecologic subspecialties. Evidence supporting the clinical value of individualized 3D printing in gynecology is limited by studies with small sample size and non-standardized reporting, which should be the focus of future studies.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-023-00169-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-023-00169-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:三维打印技术的发展使生产高质量、价格合理的医学三维打印模型成为可能。因此,医学文献中对这种方法的评价越来越高。本研究的目的是通过范围界定综述,概述个性化3D打印在妇科的临床应用。数据来源:在四个医学数据库(Medline、Embase、Cochrane CENTRAL、Scopus)和灰色文献中搜索了截至2021年5月31日符合资格标准的出版物。研究资格标准:如果出版物以英语出版,具有妇科背景,研究评估和合成方法:由两名独立评审员手动筛选和评估研究的合格性,并使用Covidence软件使用预先建立的标准提取数据。结果:总体而言,32项研究(15篇摘要,17篇全文文章)被纳入范围界定综述。大多数研究要么是病例报告(12/32,38%),要么是病例系列(15/32,47%)。使用3D打印模型的妇科子专业包括:妇科肿瘤学(21/32,66%)、良性妇科(6/32,19%)、儿科(2/32,6%)、泌尿生殖生态学(2/32,60%)以及生殖内分泌和不孕不育(1/32,3%)。20项研究(63%)打印了5个或更少的模型,6/32项研究(19%)打印了超过5个(最多50个模型)。打印的3D模型类型包括:解剖模型(11/32,34%)、医疗器械(2/32,6%)和用于近距离治疗的模板/导向器/圆柱形应用器(19/32,59%)。结论:我们的范围综述概述了个性化3D打印模型在妇科中的新临床应用。到目前为止,它们主要用于生产妇科癌症患者专用的3D打印近距离治疗指南/治疗器。然而,个性化3D打印在妇科各专科的手术计划、手术教育和患者专用设备生产方面显示出巨大的应用前景。支持个体化3D打印在妇科临床价值的证据受到样本量小和报告不规范的研究的限制,这应该是未来研究的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Individualized medicine using 3D printing technology in gynecology: a scoping review.

Objective: Developments in 3-dimensional (3D) printing technology has made it possible to produce high quality, affordable 3D printed models for use in medicine. As a result, there is a growing assessment of this approach being published in the medical literature. The objective of this study was to outline the clinical applications of individualized 3D printing in gynecology through a scoping review.

Data sources: Four medical databases (Medline, Embase, Cochrane CENTRAL, Scopus) and grey literature were searched for publications meeting eligibility criteria up to 31 May 2021.

Study eligibility criteria: Publications were included if they were published in English, had a gynecologic context, and involved production of patient specific 3D printed product(s).

Study appraisal and synthesis methods: Studies were manually screened and assessed for eligibility by two independent reviewers and data were extracted using pre-established criteria using Covidence software.

Results: Overall, 32 studies (15 abstracts,17 full text articles) were included in the scoping review. Most studies were either case reports (12/32,38%) or case series (15/32,47%). Gynecologic sub-specialties in which the 3D printed models were intended for use included: gynecologic oncology (21/32,66%), benign gynecology (6/32,19%), pediatrics (2/32,6%), urogynecology (2/32,6%) and reproductive endocrinology and infertility (1/32,3%). Twenty studies (63%) printed 5 or less models, 6/32 studies (19%) printed greater than 5 (up to 50 models). Types of 3D models printed included: anatomical models (11/32,34%), medical devices, (2/32,6%) and template/guide/cylindrical applicators for brachytherapy (19/32,59%).

Conclusions: Our scoping review has outlined novel clinical applications for individualized 3D printed models in gynecology. To date, they have mainly been used for production of patient specific 3D printed brachytherapy guides/applicators in patients with gynecologic cancer. However, individualized 3D printing shows great promise for utility in surgical planning, surgical education, and production of patient specific devices, across gynecologic subspecialties. Evidence supporting the clinical value of individualized 3D printing in gynecology is limited by studies with small sample size and non-standardized reporting, which should be the focus of future studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping. Fast and accurate distal locking of interlocked intramedullary nails using computer-vision and a 3D printed device. Metamaterial design for aortic aneurysm simulation using 3D printing. 3D-printing inherently MRI-visible accessories in aiding MRI-guided biopsies. Effectiveness of a new 3D printed simulator for mitral transcatheter edge-to-edge repair in enhancing the confidence and procedural skills of the operator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1