基于自适应层次分析法的信息基因选择

Abhishek Bhola, Shafa Mahajan, Shailendra Singh
{"title":"基于自适应层次分析法的信息基因选择","authors":"Abhishek Bhola,&nbsp;Shafa Mahajan,&nbsp;Shailendra Singh","doi":"10.1016/j.fcij.2017.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Gene expression dataset derived from microarray experiments are marked by large number of genes, which contains the gene expression values at different sample conditions/time-points. Selection of informative genes from these large datasets is an issue of major concern for various researchers and biologists. In this study, we propose a gene selection and dimensionality reduction method called Adaptive Analytic Hierarchy Process (A2HP). Traditional analytic hierarchy process is a multiple-criteria based decision analysis method whose result depends upon the expert knowledge or decision makers. It is mainly used to solve the decision problems in different fields. On the other hand, A2HP is a fused method that combines the outcomes of five individual gene selection ranking methods t-test, chi-square variance test, z-test, wilcoxon test and signal-to-noise ratio (SNR). At first, the preprocessing of gene expression dataset is done and then the reduced number of genes obtained, will be fed as input for A2HP. A2HP utilizes both quantitative and qualitative factors to select the informative genes. Results demonstrate that A2HP selects efficient number of genes as compared to the individual gene selection methods. The percentage of deduction in number of genes and time complexity are taken as the performance measure for the proposed method. And it is shown that A2HP outperforms individual gene selection methods.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"2 2","pages":"Pages 94-102"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2017.07.004","citationCount":"4","resultStr":"{\"title\":\"Informative gene selection using Adaptive Analytic Hierarchy Process (A2HP)\",\"authors\":\"Abhishek Bhola,&nbsp;Shafa Mahajan,&nbsp;Shailendra Singh\",\"doi\":\"10.1016/j.fcij.2017.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gene expression dataset derived from microarray experiments are marked by large number of genes, which contains the gene expression values at different sample conditions/time-points. Selection of informative genes from these large datasets is an issue of major concern for various researchers and biologists. In this study, we propose a gene selection and dimensionality reduction method called Adaptive Analytic Hierarchy Process (A2HP). Traditional analytic hierarchy process is a multiple-criteria based decision analysis method whose result depends upon the expert knowledge or decision makers. It is mainly used to solve the decision problems in different fields. On the other hand, A2HP is a fused method that combines the outcomes of five individual gene selection ranking methods t-test, chi-square variance test, z-test, wilcoxon test and signal-to-noise ratio (SNR). At first, the preprocessing of gene expression dataset is done and then the reduced number of genes obtained, will be fed as input for A2HP. A2HP utilizes both quantitative and qualitative factors to select the informative genes. Results demonstrate that A2HP selects efficient number of genes as compared to the individual gene selection methods. The percentage of deduction in number of genes and time complexity are taken as the performance measure for the proposed method. And it is shown that A2HP outperforms individual gene selection methods.</p></div>\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"2 2\",\"pages\":\"Pages 94-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fcij.2017.07.004\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314728817300259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728817300259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基因表达数据集由大量基因标记,包含不同样品条件/时间点下的基因表达值。从这些大数据集中选择信息基因是各种研究人员和生物学家主要关注的问题。在本研究中,我们提出了一种基因选择和降维方法,称为自适应层次分析法(A2HP)。传统的层次分析法是一种基于多准则的决策分析方法,其结果依赖于专家知识或决策者。它主要用于解决不同领域的决策问题。另一方面,A2HP是一种融合了5种个体基因选择排序方法(t检验、卡方方差检验、z检验、wilcoxon检验和信噪比)结果的融合方法。首先对基因表达数据集进行预处理,然后将得到的减少的基因数量作为A2HP的输入。A2HP利用定量因子和定性因子来选择信息基因。结果表明,与单个基因选择方法相比,A2HP选择了更有效的基因数量。以基因数目的扣除百分比和时间复杂度作为该方法的性能指标。结果表明,A2HP优于个体基因选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Informative gene selection using Adaptive Analytic Hierarchy Process (A2HP)

Gene expression dataset derived from microarray experiments are marked by large number of genes, which contains the gene expression values at different sample conditions/time-points. Selection of informative genes from these large datasets is an issue of major concern for various researchers and biologists. In this study, we propose a gene selection and dimensionality reduction method called Adaptive Analytic Hierarchy Process (A2HP). Traditional analytic hierarchy process is a multiple-criteria based decision analysis method whose result depends upon the expert knowledge or decision makers. It is mainly used to solve the decision problems in different fields. On the other hand, A2HP is a fused method that combines the outcomes of five individual gene selection ranking methods t-test, chi-square variance test, z-test, wilcoxon test and signal-to-noise ratio (SNR). At first, the preprocessing of gene expression dataset is done and then the reduced number of genes obtained, will be fed as input for A2HP. A2HP utilizes both quantitative and qualitative factors to select the informative genes. Results demonstrate that A2HP selects efficient number of genes as compared to the individual gene selection methods. The percentage of deduction in number of genes and time complexity are taken as the performance measure for the proposed method. And it is shown that A2HP outperforms individual gene selection methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1