合成Cu2O对城市混凝土下水道系统微生物缓蚀的影响

Zahra Khademmodaresi, Fereshteh Bakhtiari, Mohammadmehdi Azizi
{"title":"合成Cu2O对城市混凝土下水道系统微生物缓蚀的影响","authors":"Zahra Khademmodaresi, Fereshteh Bakhtiari, Mohammadmehdi Azizi","doi":"10.53063/synsint.2021.1233","DOIUrl":null,"url":null,"abstract":"The microbial corrosion of reinforced concrete sewers was inhibited by synthesized cuprous oxide (Cu2O) nanoparticles. The antibacterial characteristics of Cu2O on Acidithiobacillus thiooxidans were investigated by temporal variation of pH, turbidity, and bacterial counting. Three reinforced concrete samples with different weight percentages of electrodeposited Cu2O (0.06 wt%, 0.055 wt %, 0.05 wt %) were used. The bacterial counting showed that the number of bacteria in samples with 0.06, 0.055, and 0.05 wt% of Cu2O was 4.82, 4.42, and 2.94 times lower than the blank sample (BS), respectively. After bacterial growth, the optical density measurement showed that the percentage of turbidity enhancement for samples with 0.06, 0.055, and 0.05 wt% of Cu2O were 108%, 118%, 165%, respectively, while it was 412% for the BS. Moreover, the pilot stage's pH monitoring revealed that the electrodeposited Cu2O lowered the concentration of hydronium between 7 to 81 times compared to the BS. Experiments indicated that slight changes in the amount of electrodeposited Cu2O lead to significant changes in samples' ability to hinder bacterial growth and microbial-induced corrosion.    ","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":" 63","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of synthesized Cu2O on the microbial corrosion inhibition of urban concrete sewer systems\",\"authors\":\"Zahra Khademmodaresi, Fereshteh Bakhtiari, Mohammadmehdi Azizi\",\"doi\":\"10.53063/synsint.2021.1233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microbial corrosion of reinforced concrete sewers was inhibited by synthesized cuprous oxide (Cu2O) nanoparticles. The antibacterial characteristics of Cu2O on Acidithiobacillus thiooxidans were investigated by temporal variation of pH, turbidity, and bacterial counting. Three reinforced concrete samples with different weight percentages of electrodeposited Cu2O (0.06 wt%, 0.055 wt %, 0.05 wt %) were used. The bacterial counting showed that the number of bacteria in samples with 0.06, 0.055, and 0.05 wt% of Cu2O was 4.82, 4.42, and 2.94 times lower than the blank sample (BS), respectively. After bacterial growth, the optical density measurement showed that the percentage of turbidity enhancement for samples with 0.06, 0.055, and 0.05 wt% of Cu2O were 108%, 118%, 165%, respectively, while it was 412% for the BS. Moreover, the pilot stage's pH monitoring revealed that the electrodeposited Cu2O lowered the concentration of hydronium between 7 to 81 times compared to the BS. Experiments indicated that slight changes in the amount of electrodeposited Cu2O lead to significant changes in samples' ability to hinder bacterial growth and microbial-induced corrosion.    \",\"PeriodicalId\":22113,\"journal\":{\"name\":\"Synthesis and Sintering\",\"volume\":\" 63\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis and Sintering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53063/synsint.2021.1233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2021.1233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

合成的氧化亚铜(Cu2O)纳米颗粒抑制了钢筋混凝土下水道的微生物腐蚀。通过pH值、浊度和细菌计数的时间变化研究了Cu2O对酸性硫氧化硫杆菌的抑菌特性。采用三种不同重量百分比(0.06 wt%, 0.055 wt%, 0.05 wt%)的电沉积Cu2O的钢筋混凝土样品。细菌计数结果显示,添加0.06、0.055和0.05 wt% Cu2O的样品中细菌数量分别比空白样品(BS)低4.82、4.42和2.94倍。细菌生长后,光密度测量结果显示,添加0.06、0.055、0.05 wt% Cu2O的样品浊度增强率分别为108%、118%、165%,而添加BS的样品浊度增强率为412%。此外,中试阶段的pH监测表明,与BS相比,电沉积Cu2O使水合氢离子浓度降低了7 ~ 81倍。实验表明,电沉积Cu2O量的微小变化会导致样品抑制细菌生长和微生物腐蚀的能力发生显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of synthesized Cu2O on the microbial corrosion inhibition of urban concrete sewer systems
The microbial corrosion of reinforced concrete sewers was inhibited by synthesized cuprous oxide (Cu2O) nanoparticles. The antibacterial characteristics of Cu2O on Acidithiobacillus thiooxidans were investigated by temporal variation of pH, turbidity, and bacterial counting. Three reinforced concrete samples with different weight percentages of electrodeposited Cu2O (0.06 wt%, 0.055 wt %, 0.05 wt %) were used. The bacterial counting showed that the number of bacteria in samples with 0.06, 0.055, and 0.05 wt% of Cu2O was 4.82, 4.42, and 2.94 times lower than the blank sample (BS), respectively. After bacterial growth, the optical density measurement showed that the percentage of turbidity enhancement for samples with 0.06, 0.055, and 0.05 wt% of Cu2O were 108%, 118%, 165%, respectively, while it was 412% for the BS. Moreover, the pilot stage's pH monitoring revealed that the electrodeposited Cu2O lowered the concentration of hydronium between 7 to 81 times compared to the BS. Experiments indicated that slight changes in the amount of electrodeposited Cu2O lead to significant changes in samples' ability to hinder bacterial growth and microbial-induced corrosion.    
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D-printed calcium magnesium silicates: A mini-review Solid-solution phase formation rules for high entropy alloys: A thermodynamic perspective A review of synthesis strategies for nickel cobaltite-based composites in supercapacitor applications Synthesis and doping of high-temperature resistant spinel nano pigments: A review Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1