无取向电工钢中α-和γ-纤维再结晶差异及其对立方织构形成的影响

D. Hawezy, S. Birosca
{"title":"无取向电工钢中α-和γ-纤维再结晶差异及其对立方织构形成的影响","authors":"D. Hawezy, S. Birosca","doi":"10.2139/ssrn.3742922","DOIUrl":null,"url":null,"abstract":"An investigation into the recovery and recrystallization of the two major texture fibres during annealing, namely α and γ, yielded subtle differences between the two. It is reported that with thermal activation static recovery occurs, where dislocation free sub-grains are formed and tend to grow, coalesce, or bulge out. This can form new strain-free recrystallisation nuclei, with the coalesce or bulging phenomenon depending on stored energy and geometrically dislocation density (GND). Due to low lattice curvature or otherwise, it was found α-fiber has low stored energy and GND values which favours bulging into neighbouring deformed grains as opposed to subgrain coalescement. In contrast, γ-fiber tends to undergo rapid subgrain coalescement due to high lattice curvature, i.e., GND and stored energy. The newly formed grains from both texture fibers were also found to typically differ in size, as γ-fiber has a much higher nucleation rate with rapid subgrain coalescence. Furthermore, it was discovered that Cube texture component though nucleating in higher rates within α-fiber, nucleates in all regions of high dislocation densities but will only survive in regions with a low recovery and nucleation rates, typically as in α-fiber state condition. Moreover, Goss texture component was found to preferentially nucleate from γ-fiber.","PeriodicalId":7755,"journal":{"name":"AMI: Acta Materialia","volume":"19 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Disparity in Recrystallization of α- & γ-Fibers and its Impact on Cube Texture Formation in Non-Oriented Electrical Steel\",\"authors\":\"D. Hawezy, S. Birosca\",\"doi\":\"10.2139/ssrn.3742922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation into the recovery and recrystallization of the two major texture fibres during annealing, namely α and γ, yielded subtle differences between the two. It is reported that with thermal activation static recovery occurs, where dislocation free sub-grains are formed and tend to grow, coalesce, or bulge out. This can form new strain-free recrystallisation nuclei, with the coalesce or bulging phenomenon depending on stored energy and geometrically dislocation density (GND). Due to low lattice curvature or otherwise, it was found α-fiber has low stored energy and GND values which favours bulging into neighbouring deformed grains as opposed to subgrain coalescement. In contrast, γ-fiber tends to undergo rapid subgrain coalescement due to high lattice curvature, i.e., GND and stored energy. The newly formed grains from both texture fibers were also found to typically differ in size, as γ-fiber has a much higher nucleation rate with rapid subgrain coalescence. Furthermore, it was discovered that Cube texture component though nucleating in higher rates within α-fiber, nucleates in all regions of high dislocation densities but will only survive in regions with a low recovery and nucleation rates, typically as in α-fiber state condition. Moreover, Goss texture component was found to preferentially nucleate from γ-fiber.\",\"PeriodicalId\":7755,\"journal\":{\"name\":\"AMI: Acta Materialia\",\"volume\":\"19 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMI: Acta Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3742922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMI: Acta Materialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3742922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对α和γ这两种主要织构纤维在退火过程中的恢复和再结晶进行了研究,得出了两者之间的细微差异。据报道,随着热激活,静态恢复发生,其中形成无位错的亚晶粒,并倾向于长大,合并或凸起。这可以形成新的无应变再结晶核,其聚结或胀形现象取决于存储的能量和几何位错密度(GND)。由于晶格曲率低或其他原因,α-纤维具有较低的存储能量和GND值,有利于向邻近的变形晶粒胀形而不是亚晶粒聚结。相比之下,γ-光纤由于高晶格曲率,即GND和存储的能量,往往经历快速的亚粒聚结。两种织构纤维新形成的晶粒尺寸也不同,因为γ-纤维具有更高的成核率和快速的亚晶粒聚并。此外,我们发现立方体织构成分虽然在α-纤维中以较高的速率成核,但在所有位错密度高的区域都成核,而只在恢复和成核速率低的区域存在,特别是在α-纤维状态下。此外,发现Goss织构成分优先从γ-纤维成核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disparity in Recrystallization of α- & γ-Fibers and its Impact on Cube Texture Formation in Non-Oriented Electrical Steel
An investigation into the recovery and recrystallization of the two major texture fibres during annealing, namely α and γ, yielded subtle differences between the two. It is reported that with thermal activation static recovery occurs, where dislocation free sub-grains are formed and tend to grow, coalesce, or bulge out. This can form new strain-free recrystallisation nuclei, with the coalesce or bulging phenomenon depending on stored energy and geometrically dislocation density (GND). Due to low lattice curvature or otherwise, it was found α-fiber has low stored energy and GND values which favours bulging into neighbouring deformed grains as opposed to subgrain coalescement. In contrast, γ-fiber tends to undergo rapid subgrain coalescement due to high lattice curvature, i.e., GND and stored energy. The newly formed grains from both texture fibers were also found to typically differ in size, as γ-fiber has a much higher nucleation rate with rapid subgrain coalescence. Furthermore, it was discovered that Cube texture component though nucleating in higher rates within α-fiber, nucleates in all regions of high dislocation densities but will only survive in regions with a low recovery and nucleation rates, typically as in α-fiber state condition. Moreover, Goss texture component was found to preferentially nucleate from γ-fiber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gradient Plastic Zone Model in Equiatomic Face-Centered Cubic Alloys Modelling of Additive Manufacturability of Nickel-Based Superalloys for Laser Powder Bed Fusion Revealing the Mode and Strain of Reversible Twinning in B19' Martensite by in situ Synchrotron X-Ray Diffraction Efficient Generation of Anisotropic N-Field Microstructures From 2-Point Statistics Using Multi-Output Gaussian Random Fields Liquid Cell Transmission Electron Microscopy Reveals C-S-H Growth Mechanism During Portland Cement Hydration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1