{"title":"PSSM","authors":"Shougang Yuan, Yan Solihin, Huiyang Zhou","doi":"10.1145/3447818.3460374","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the secure memory architecture for GPUs and point out that conventional CPU secure memory architecture can not be directly adopted to the GPUs. The key reasons include: (1) accessing the security metadata, including encryption counters, message authentication codes (MACs) and integrity trees, requires significant memory bandwidth, which may lead to severe bandwidth competition with normal data accesses and degrade the GPU performance; (2) contemporary GPUs use partitioned memory organization, which results in storage and coherence problems for encryption counters and integrity trees since different partitions may need to update the same counter/integrity tree blocks; and (3) the existing split-counter block organization is not friendly to sectored caches, which are commonly used in GPU for bandwidth savings. Based on these observations, we propose partitioned and sectored security metadata (PSSM), which has two components: (a) using the offset addresses (referred to as local addresses) within each partition, instead of the virtual or physical addresses, to generate the metadata so as to solve the counter or integrity tree storage and coherence problem and (b) reorganizing the security metadata to make them friendly to the sectored cache structure so as to reduce the memory bandwidth consumption of metadata accesses. With these proposed schemes, the performance overhead of secure GPU memory is reduced from 59.22% to 16.84% on average. If only memory encryption is required, the performance overhead is reduced from 29.53% to 5.18%.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"140 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PSSM\",\"authors\":\"Shougang Yuan, Yan Solihin, Huiyang Zhou\",\"doi\":\"10.1145/3447818.3460374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the secure memory architecture for GPUs and point out that conventional CPU secure memory architecture can not be directly adopted to the GPUs. The key reasons include: (1) accessing the security metadata, including encryption counters, message authentication codes (MACs) and integrity trees, requires significant memory bandwidth, which may lead to severe bandwidth competition with normal data accesses and degrade the GPU performance; (2) contemporary GPUs use partitioned memory organization, which results in storage and coherence problems for encryption counters and integrity trees since different partitions may need to update the same counter/integrity tree blocks; and (3) the existing split-counter block organization is not friendly to sectored caches, which are commonly used in GPU for bandwidth savings. Based on these observations, we propose partitioned and sectored security metadata (PSSM), which has two components: (a) using the offset addresses (referred to as local addresses) within each partition, instead of the virtual or physical addresses, to generate the metadata so as to solve the counter or integrity tree storage and coherence problem and (b) reorganizing the security metadata to make them friendly to the sectored cache structure so as to reduce the memory bandwidth consumption of metadata accesses. With these proposed schemes, the performance overhead of secure GPU memory is reduced from 59.22% to 16.84% on average. If only memory encryption is required, the performance overhead is reduced from 29.53% to 5.18%.\",\"PeriodicalId\":73273,\"journal\":{\"name\":\"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing\",\"volume\":\"140 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447818.3460374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSSM
In this paper, we investigate the secure memory architecture for GPUs and point out that conventional CPU secure memory architecture can not be directly adopted to the GPUs. The key reasons include: (1) accessing the security metadata, including encryption counters, message authentication codes (MACs) and integrity trees, requires significant memory bandwidth, which may lead to severe bandwidth competition with normal data accesses and degrade the GPU performance; (2) contemporary GPUs use partitioned memory organization, which results in storage and coherence problems for encryption counters and integrity trees since different partitions may need to update the same counter/integrity tree blocks; and (3) the existing split-counter block organization is not friendly to sectored caches, which are commonly used in GPU for bandwidth savings. Based on these observations, we propose partitioned and sectored security metadata (PSSM), which has two components: (a) using the offset addresses (referred to as local addresses) within each partition, instead of the virtual or physical addresses, to generate the metadata so as to solve the counter or integrity tree storage and coherence problem and (b) reorganizing the security metadata to make them friendly to the sectored cache structure so as to reduce the memory bandwidth consumption of metadata accesses. With these proposed schemes, the performance overhead of secure GPU memory is reduced from 59.22% to 16.84% on average. If only memory encryption is required, the performance overhead is reduced from 29.53% to 5.18%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating BWA-MEM Read Mapping on GPUs. Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs. Priority Algorithms with Advice for Disjoint Path Allocation Problems From Data of Internet of Things to Domain Knowledge: A Case Study of Exploration in Smart Agriculture On Two Variants of Induced Matchings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1