通过信息扩散学习集群

L. Ostroumova, Alexey Tikhonov, N. Litvak
{"title":"通过信息扩散学习集群","authors":"L. Ostroumova, Alexey Tikhonov, N. Litvak","doi":"10.1145/3308558.3313560","DOIUrl":null,"url":null,"abstract":"When information or infectious diseases spread over a network, in many practical cases, one can observe when nodes adopt information or become infected, but the underlying network is hidden. In this paper, we analyze the problem of finding communities of highly interconnected nodes, given only the infection times of nodes. We propose, analyze, and empirically compare several algorithms for this task. The most stable performance, that improves the current state-of-the-art, is obtained by our proposed heuristic approaches, that are agnostic to a particular graph structure and epidemic model.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"464 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Learning Clusters through Information Diffusion\",\"authors\":\"L. Ostroumova, Alexey Tikhonov, N. Litvak\",\"doi\":\"10.1145/3308558.3313560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When information or infectious diseases spread over a network, in many practical cases, one can observe when nodes adopt information or become infected, but the underlying network is hidden. In this paper, we analyze the problem of finding communities of highly interconnected nodes, given only the infection times of nodes. We propose, analyze, and empirically compare several algorithms for this task. The most stable performance, that improves the current state-of-the-art, is obtained by our proposed heuristic approaches, that are agnostic to a particular graph structure and epidemic model.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"464 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

当信息或传染病在网络上传播时,在许多实际情况下,人们可以观察到节点何时采用信息或被感染,但底层网络是隐藏的。在给定节点感染次数的情况下,我们分析了寻找高度互联节点群体的问题。我们为这项任务提出、分析和经验比较了几种算法。我们提出的启发式方法对特定的图结构和流行病模型不可知,从而获得了最稳定的性能,提高了当前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Clusters through Information Diffusion
When information or infectious diseases spread over a network, in many practical cases, one can observe when nodes adopt information or become infected, but the underlying network is hidden. In this paper, we analyze the problem of finding communities of highly interconnected nodes, given only the infection times of nodes. We propose, analyze, and empirically compare several algorithms for this task. The most stable performance, that improves the current state-of-the-art, is obtained by our proposed heuristic approaches, that are agnostic to a particular graph structure and epidemic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1