分析未培养噬菌体基因组的计算工具。

IF 8 1区 生物学 Q1 MICROBIOLOGY Microbiology and Molecular Biology Reviews Pub Date : 2022-06-15 Epub Date: 2022-03-21 DOI:10.1128/mmbr.00004-21
Juan Sebastián Andrade-Martínez, Laura Carolina Camelo Valera, Luis Alberto Chica Cárdenas, Laura Forero-Junco, Gamaliel López-Leal, J Leonardo Moreno-Gallego, Guillermo Rangel-Pineros, Alejandro Reyes
{"title":"分析未培养噬菌体基因组的计算工具。","authors":"Juan Sebastián Andrade-Martínez, Laura Carolina Camelo Valera, Luis Alberto Chica Cárdenas, Laura Forero-Junco, Gamaliel López-Leal, J Leonardo Moreno-Gallego, Guillermo Rangel-Pineros, Alejandro Reyes","doi":"10.1128/mmbr.00004-21","DOIUrl":null,"url":null,"abstract":"<p><p>Over a century of bacteriophage research has uncovered a plethora of fundamental aspects of their biology, ecology, and evolution. Furthermore, the introduction of community-level studies through metagenomics has revealed unprecedented insights on the impact that phages have on a range of ecological and physiological processes. It was not until the introduction of viral metagenomics that we began to grasp the astonishing breadth of genetic diversity encompassed by phage genomes. Novel phage genomes have been reported from a diverse range of biomes at an increasing rate, which has prompted the development of computational tools that support the multilevel characterization of these novel phages based solely on their genome sequences. The impact of these technologies has been so large that, together with MAGs (Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes), which are now officially recognized by the International Committee for the Taxonomy of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on genomic sequence information. Even though the available tools have immensely contributed to our knowledge of phage diversity and ecology, the ongoing surge in software programs makes it challenging to keep up with them and the purpose each one is designed for. Therefore, in this review, we describe a comprehensive set of currently available computational tools designed for the characterization of phage genome sequences, focusing on five specific analyses: (i) assembly and identification of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":"86 2","pages":"e0000421"},"PeriodicalIF":8.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199400/pdf/mmbr.00004-21.pdf","citationCount":"0","resultStr":"{\"title\":\"Computational Tools for the Analysis of Uncultivated Phage Genomes.\",\"authors\":\"Juan Sebastián Andrade-Martínez, Laura Carolina Camelo Valera, Luis Alberto Chica Cárdenas, Laura Forero-Junco, Gamaliel López-Leal, J Leonardo Moreno-Gallego, Guillermo Rangel-Pineros, Alejandro Reyes\",\"doi\":\"10.1128/mmbr.00004-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over a century of bacteriophage research has uncovered a plethora of fundamental aspects of their biology, ecology, and evolution. Furthermore, the introduction of community-level studies through metagenomics has revealed unprecedented insights on the impact that phages have on a range of ecological and physiological processes. It was not until the introduction of viral metagenomics that we began to grasp the astonishing breadth of genetic diversity encompassed by phage genomes. Novel phage genomes have been reported from a diverse range of biomes at an increasing rate, which has prompted the development of computational tools that support the multilevel characterization of these novel phages based solely on their genome sequences. The impact of these technologies has been so large that, together with MAGs (Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes), which are now officially recognized by the International Committee for the Taxonomy of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on genomic sequence information. Even though the available tools have immensely contributed to our knowledge of phage diversity and ecology, the ongoing surge in software programs makes it challenging to keep up with them and the purpose each one is designed for. Therefore, in this review, we describe a comprehensive set of currently available computational tools designed for the characterization of phage genome sequences, focusing on five specific analyses: (i) assembly and identification of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\"86 2\",\"pages\":\"e0000421\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9199400/pdf/mmbr.00004-21.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00004-21\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00004-21","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一个多世纪以来的噬菌体研究揭示了噬菌体生物学、生态学和进化的大量基本方面。此外,通过元基因组学引入的群落级研究也揭示了噬菌体对一系列生态和生理过程所产生的影响,这些都是前所未有的。直到引入病毒元基因组学,我们才开始了解噬菌体基因组所包含的惊人的遗传多样性。新的噬菌体基因组从不同的生物群落中被报道出来的速度越来越快,这促使我们开发了计算工具,仅根据基因组序列就能对这些新的噬菌体进行多层次的特征描述。这些技术的影响如此之大,以至于与 MAGs(元基因组组装基因组)一起,我们现在有了 UViGs(未培养病毒基因组),它现在已被国际病毒分类委员会(ICTV)正式认可,现在可以完全根据基因组序列信息创建新的分类组。尽管现有的工具极大地促进了我们对噬菌体多样性和生态学的了解,但软件程序的不断激增使我们很难跟上它们的步伐,也很难了解每个软件程序的设计目的。因此,在这篇综述中,我们介绍了目前可用的用于描述噬菌体基因组序列特征的一整套计算工具,重点介绍五种具体分析方法:(i) 组装和鉴定噬菌体与噬菌体序列;(ii) 噬菌体基因组注释;(iii) 噬菌体分类;(iv) 噬菌体-宿主相互作用分析;(v) 噬菌体微多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Tools for the Analysis of Uncultivated Phage Genomes.

Over a century of bacteriophage research has uncovered a plethora of fundamental aspects of their biology, ecology, and evolution. Furthermore, the introduction of community-level studies through metagenomics has revealed unprecedented insights on the impact that phages have on a range of ecological and physiological processes. It was not until the introduction of viral metagenomics that we began to grasp the astonishing breadth of genetic diversity encompassed by phage genomes. Novel phage genomes have been reported from a diverse range of biomes at an increasing rate, which has prompted the development of computational tools that support the multilevel characterization of these novel phages based solely on their genome sequences. The impact of these technologies has been so large that, together with MAGs (Metagenomic Assembled Genomes), we now have UViGs (Uncultivated Viral Genomes), which are now officially recognized by the International Committee for the Taxonomy of Viruses (ICTV), and new taxonomic groups can now be created based exclusively on genomic sequence information. Even though the available tools have immensely contributed to our knowledge of phage diversity and ecology, the ongoing surge in software programs makes it challenging to keep up with them and the purpose each one is designed for. Therefore, in this review, we describe a comprehensive set of currently available computational tools designed for the characterization of phage genome sequences, focusing on five specific analyses: (i) assembly and identification of phage and prophage sequences, (ii) phage genome annotation, (iii) phage taxonomic classification, (iv) phage-host interaction analysis, and (v) phage microdiversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
期刊最新文献
STRIPAK, a fundamental signaling hub of eukaryotic development. Threats from the Candida parapsilosis complex: the surge of multidrug resistance and a hotbed for new emerging pathogens. Bacterial acquisition of host fatty acids has far-reaching implications on virulence. Hepatitis B virus entry, assembly, and egress. Urinary tract infections and catheter-associated urinary tract infections caused by Pseudomonas aeruginosa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1