异构计算中预算约束下业务流管理的遗传算法

Ahmed A. AbdulHamed, Medhat A. Tawfeek, Arabi E. Keshk
{"title":"异构计算中预算约束下业务流管理的遗传算法","authors":"Ahmed A. AbdulHamed,&nbsp;Medhat A. Tawfeek,&nbsp;Arabi E. Keshk","doi":"10.1016/j.fcij.2018.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous computing supply various and scalable resources for many applications requirements. Its structure is based on interconnecting machines with several processing capacity spread over networks. The scientific bioinformatics and many other applications demand service flow processing in which services have dependencies execution. The environments of this computing are suitable for huge computational needs that contains diverse groups of services. Managing and mapping services of service flow to the suitable candidates who provides the service is classified as NP-complete problem. The managing such interdependent services on heterogeneous environments also takes the Quality of Service (QoS) requirements from users into account. This paper firstly proposes a model of service flow management with service cost quality requirement in heterogeneous computing. After that a service flow mapping algorithm named genetic to reduce the consumed cost of an application in heterogeneous environments is proposed. This algorithm gives a robust search technique that allow a soft cost solution to be derived from a huge search space of solutions by inheriting the evolution concepts. The obtained results from the applied experiments prove that genetic can save more than fifteen percent from the cost and also outperforms the compared algorithms in the metric of speedup and SLR.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 2","pages":"Pages 341-347"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2018.10.004","citationCount":"5","resultStr":"{\"title\":\"A genetic algorithm for service flow management with budget constraint in heterogeneous computing\",\"authors\":\"Ahmed A. AbdulHamed,&nbsp;Medhat A. Tawfeek,&nbsp;Arabi E. Keshk\",\"doi\":\"10.1016/j.fcij.2018.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heterogeneous computing supply various and scalable resources for many applications requirements. Its structure is based on interconnecting machines with several processing capacity spread over networks. The scientific bioinformatics and many other applications demand service flow processing in which services have dependencies execution. The environments of this computing are suitable for huge computational needs that contains diverse groups of services. Managing and mapping services of service flow to the suitable candidates who provides the service is classified as NP-complete problem. The managing such interdependent services on heterogeneous environments also takes the Quality of Service (QoS) requirements from users into account. This paper firstly proposes a model of service flow management with service cost quality requirement in heterogeneous computing. After that a service flow mapping algorithm named genetic to reduce the consumed cost of an application in heterogeneous environments is proposed. This algorithm gives a robust search technique that allow a soft cost solution to be derived from a huge search space of solutions by inheriting the evolution concepts. The obtained results from the applied experiments prove that genetic can save more than fifteen percent from the cost and also outperforms the compared algorithms in the metric of speedup and SLR.</p></div>\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"3 2\",\"pages\":\"Pages 341-347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fcij.2018.10.004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314728818300370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728818300370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

异构计算为许多应用程序需求提供各种可伸缩的资源。它的结构是基于将多个处理能力分布在网络上的机器相互连接。科学生物信息学和许多其他应用程序需要服务流处理,其中服务具有依赖性执行。这种计算环境适合于包含不同服务组的巨大计算需求。管理服务流的服务并将其映射到提供服务的合适候选者是np完全问题。在异构环境中管理这些相互依赖的服务还需要考虑用户的服务质量(QoS)需求。本文首先提出了异构计算中具有服务成本质量要求的业务流管理模型。在此基础上,提出了一种基于遗传的服务流映射算法,以降低异构环境下应用程序的消耗成本。该算法通过继承进化概念,提供了一种鲁棒的搜索技术,可以从巨大的解搜索空间中得到软代价解。应用实验结果表明,遗传算法可以节省15%以上的成本,并且在加速和单反方面也优于比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genetic algorithm for service flow management with budget constraint in heterogeneous computing

Heterogeneous computing supply various and scalable resources for many applications requirements. Its structure is based on interconnecting machines with several processing capacity spread over networks. The scientific bioinformatics and many other applications demand service flow processing in which services have dependencies execution. The environments of this computing are suitable for huge computational needs that contains diverse groups of services. Managing and mapping services of service flow to the suitable candidates who provides the service is classified as NP-complete problem. The managing such interdependent services on heterogeneous environments also takes the Quality of Service (QoS) requirements from users into account. This paper firstly proposes a model of service flow management with service cost quality requirement in heterogeneous computing. After that a service flow mapping algorithm named genetic to reduce the consumed cost of an application in heterogeneous environments is proposed. This algorithm gives a robust search technique that allow a soft cost solution to be derived from a huge search space of solutions by inheriting the evolution concepts. The obtained results from the applied experiments prove that genetic can save more than fifteen percent from the cost and also outperforms the compared algorithms in the metric of speedup and SLR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1