多特征Web图像聚类算法研究

Yehong Han
{"title":"多特征Web图像聚类算法研究","authors":"Yehong Han","doi":"10.1109/IICSPI.2018.8690397","DOIUrl":null,"url":null,"abstract":"In order to find interesting images from massive Web resources, mine useful information, the clustering algorithm of multi-feature Web images based on Web2.0 is studied in the paper. By using this algorithm, the relationship between the Web image and its metadata is structured a K-partite graph by a reasonable measure of metadata similarity. Clustering results can be obtained by the K-partite graph. The accuracy of clustering can be enhanced through the effective fusion of rich heterogeneous metadata in Web image. High-quality clustering results obtained by the algorithm can be used to mine useful information from web images. Users do not need to give the weight of each type of metadata. The algorithm researched in the paper is scalable, which can be applied to large-scale image clustering and can be parallelized.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"24 1","pages":"821-824"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Multi - feature Web Image Clustering Algorithm\",\"authors\":\"Yehong Han\",\"doi\":\"10.1109/IICSPI.2018.8690397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to find interesting images from massive Web resources, mine useful information, the clustering algorithm of multi-feature Web images based on Web2.0 is studied in the paper. By using this algorithm, the relationship between the Web image and its metadata is structured a K-partite graph by a reasonable measure of metadata similarity. Clustering results can be obtained by the K-partite graph. The accuracy of clustering can be enhanced through the effective fusion of rich heterogeneous metadata in Web image. High-quality clustering results obtained by the algorithm can be used to mine useful information from web images. Users do not need to give the weight of each type of metadata. The algorithm researched in the paper is scalable, which can be applied to large-scale image clustering and can be parallelized.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"24 1\",\"pages\":\"821-824\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了从海量的Web资源中发现有趣的图像,挖掘有用的信息,本文研究了基于Web2.0的多特征Web图像聚类算法。该算法通过合理的元数据相似度度量,将Web图像与其元数据之间的关系构建为k部图。聚类结果可以通过k部图得到。通过对Web图像中丰富的异构元数据进行有效融合,可以提高聚类的精度。该算法获得的高质量聚类结果可用于从web图像中挖掘有用信息。用户不需要给出每种类型元数据的权重。本文研究的算法具有可扩展性,可以应用于大规模图像聚类,并且可以并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Multi - feature Web Image Clustering Algorithm
In order to find interesting images from massive Web resources, mine useful information, the clustering algorithm of multi-feature Web images based on Web2.0 is studied in the paper. By using this algorithm, the relationship between the Web image and its metadata is structured a K-partite graph by a reasonable measure of metadata similarity. Clustering results can be obtained by the K-partite graph. The accuracy of clustering can be enhanced through the effective fusion of rich heterogeneous metadata in Web image. High-quality clustering results obtained by the algorithm can be used to mine useful information from web images. Users do not need to give the weight of each type of metadata. The algorithm researched in the paper is scalable, which can be applied to large-scale image clustering and can be parallelized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Functional Safety Analysis and Design of Dual-Motor Hybrid Bus Clutch System Methods of Resource Allocation with Conflict Detection Exploration and Application of Sheet Metal Technology on Pit Package Repairing Study on Standardization of Electrolytic Trace Moisture Meter in Safety Construction of CNG Refueling Station The Research and Analysis of Big Data Application on Distribution Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1