心理人格分类方法综述

Mervat Ragab Bakry, Mona M. Nasr, Fahad Kamal Al-sheref
{"title":"心理人格分类方法综述","authors":"Mervat Ragab Bakry, Mona M. Nasr, Fahad Kamal Al-sheref","doi":"10.54623/fue.fcij.4.2.3","DOIUrl":null,"url":null,"abstract":"Online social networks (OSNs) have become essential ways for users to socially share information and feelings, communicate, and thoughts with others through online social networks. Online social networks such as Twitter and Facebook are some of the most common OSNs among users. Users’ behaviors on social networks aid researchers for detecting and understanding their online behaviors and personality traits. Personality detection is one of the new difficulties in social networks. Machine learning techniques are used to build models for understanding personality, detecting personality traits, and classifying users into different kinds through user generated content based on different features and measures of psychological models such as PEN (Psychoticism, Extraversion, and Neuroticism) model, DISC (Dominance, Influence, Steadiness, and Compliance) model, and the Big-five model (Openness, Extraversion, Consciousness, Agreeableness, and Neurotic) which is the most accepted model of personality. This survey discusses the existing works on psychological personality classification.","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"111 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Psychological Personality Classification Approaches\",\"authors\":\"Mervat Ragab Bakry, Mona M. Nasr, Fahad Kamal Al-sheref\",\"doi\":\"10.54623/fue.fcij.4.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social networks (OSNs) have become essential ways for users to socially share information and feelings, communicate, and thoughts with others through online social networks. Online social networks such as Twitter and Facebook are some of the most common OSNs among users. Users’ behaviors on social networks aid researchers for detecting and understanding their online behaviors and personality traits. Personality detection is one of the new difficulties in social networks. Machine learning techniques are used to build models for understanding personality, detecting personality traits, and classifying users into different kinds through user generated content based on different features and measures of psychological models such as PEN (Psychoticism, Extraversion, and Neuroticism) model, DISC (Dominance, Influence, Steadiness, and Compliance) model, and the Big-five model (Openness, Extraversion, Consciousness, Agreeableness, and Neurotic) which is the most accepted model of personality. This survey discusses the existing works on psychological personality classification.\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"111 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54623/fue.fcij.4.2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54623/fue.fcij.4.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线社交网络(Online social network,简称osn)已经成为用户通过在线社交网络与他人分享信息和感受、交流思想的重要方式。Twitter和Facebook等在线社交网络是用户最常用的osn。用户在社交网络上的行为有助于研究人员发现和理解他们的在线行为和人格特征。人格检测是社交网络的新难点之一。基于PEN (Psychoticism, Extraversion, Neuroticism)模型、DISC (Dominance, Influence, Steadiness, and Compliance)模型、Big-five (Openness, Extraversion, Consciousness, Agreeableness)模型等心理模型的不同特征和度量,利用机器学习技术构建理解人格、检测人格特征的模型,并通过用户生成的内容将用户分类为不同的类型。和神经质),这是最被接受的人格模型。本文对现有的心理人格分类研究进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey of Psychological Personality Classification Approaches
Online social networks (OSNs) have become essential ways for users to socially share information and feelings, communicate, and thoughts with others through online social networks. Online social networks such as Twitter and Facebook are some of the most common OSNs among users. Users’ behaviors on social networks aid researchers for detecting and understanding their online behaviors and personality traits. Personality detection is one of the new difficulties in social networks. Machine learning techniques are used to build models for understanding personality, detecting personality traits, and classifying users into different kinds through user generated content based on different features and measures of psychological models such as PEN (Psychoticism, Extraversion, and Neuroticism) model, DISC (Dominance, Influence, Steadiness, and Compliance) model, and the Big-five model (Openness, Extraversion, Consciousness, Agreeableness, and Neurotic) which is the most accepted model of personality. This survey discusses the existing works on psychological personality classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1