{"title":"极寒条件下防护服材料的隔热性能","authors":"Mohamed Zemzem , Stéphane Hallé , Ludwig Vinches","doi":"10.1016/j.shaw.2022.11.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity.</p></div><div><h3>Methods</h3><p>Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the “skin model,” based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements.</p></div><div><h3>Results</h3><p>It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (−40°C, 30°C), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies.</p></div><div><h3>Conclusion</h3><p>The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.</p></div>","PeriodicalId":56149,"journal":{"name":"Safety and Health at Work","volume":"14 1","pages":"Pages 107-117"},"PeriodicalIF":3.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/96/f1/main.PMC10024235.pdf","citationCount":"2","resultStr":"{\"title\":\"Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions\",\"authors\":\"Mohamed Zemzem , Stéphane Hallé , Ludwig Vinches\",\"doi\":\"10.1016/j.shaw.2022.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity.</p></div><div><h3>Methods</h3><p>Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the “skin model,” based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements.</p></div><div><h3>Results</h3><p>It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (−40°C, 30°C), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies.</p></div><div><h3>Conclusion</h3><p>The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.</p></div>\",\"PeriodicalId\":56149,\"journal\":{\"name\":\"Safety and Health at Work\",\"volume\":\"14 1\",\"pages\":\"Pages 107-117\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/96/f1/main.PMC10024235.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Safety and Health at Work\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2093791122001494\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Safety and Health at Work","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2093791122001494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions
Background
Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity.
Methods
Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the “skin model,” based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements.
Results
It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (−40°C, 30°C), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies.
Conclusion
The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.
期刊介绍:
Safety and Health at Work (SH@W) is an international, peer-reviewed, interdisciplinary journal published quarterly in English beginning in 2010. The journal is aimed at providing grounds for the exchange of ideas and data developed through research experience in the broad field of occupational health and safety. Articles may deal with scientific research to improve workers'' health and safety by eliminating occupational accidents and diseases, pursuing a better working life, and creating a safe and comfortable working environment. The journal focuses primarily on original articles across the whole scope of occupational health and safety, but also welcomes up-to-date review papers and short communications and commentaries on urgent issues and case studies on unique epidemiological survey, methods of accident investigation, and analysis. High priority will be given to articles on occupational epidemiology, medicine, hygiene, toxicology, nursing and health services, work safety, ergonomics, work organization, engineering of safety (mechanical, electrical, chemical, and construction), safety management and policy, and studies related to economic evaluation and its social policy and organizational aspects. Its abbreviated title is Saf Health Work.