{"title":"光质对玉米芽中类胡萝卜素的调节","authors":"Nan Xiang , Yihan Zhao , Siyun Wang , Xinbo Guo","doi":"10.1016/j.fochms.2022.100128","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aimed to identify the regulatory mechanisms of red, blue, and white light on carotenoid biosynthesis in maize sprouts. Determinations of carotenoid, chlorophyll and phytohormone profiles, as well as relative gene expression, were explored. The results identified enhancement of carotenoid and chlorophyll production as well as gene expression. Most notably, the expression levels of <em>CRY</em>, <em>HY5</em>, and beta-carotene 3-hydroxylase genes peaked under blue light. Photomorphogene-related hormone, auxins and strigolactone production was also altered under different lights and might have a role in carotenoid metabolism. Gibberellins competed with carotenoids for the precursor geranylgeranyl diphosphate and were hindered by certain light characteristics, probably via DELLA-PIF4 signalling. <em>ERF021</em> and <em>MYB68</em> were negative regulators of carotenoid biosynthesis in maize sprouts. These findings provide new insights into the light-regulated mechanism and biofortification of carotenoids in maize sprouts.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566222000569/pdfft?md5=5431d00f09e07c4a3fdfc39dbf310ad9&pid=1-s2.0-S2666566222000569-main.pdf","citationCount":"5","resultStr":"{\"title\":\"The modulation of light quality on carotenoids in maize (Zea mays L.) sprouts\",\"authors\":\"Nan Xiang , Yihan Zhao , Siyun Wang , Xinbo Guo\",\"doi\":\"10.1016/j.fochms.2022.100128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study aimed to identify the regulatory mechanisms of red, blue, and white light on carotenoid biosynthesis in maize sprouts. Determinations of carotenoid, chlorophyll and phytohormone profiles, as well as relative gene expression, were explored. The results identified enhancement of carotenoid and chlorophyll production as well as gene expression. Most notably, the expression levels of <em>CRY</em>, <em>HY5</em>, and beta-carotene 3-hydroxylase genes peaked under blue light. Photomorphogene-related hormone, auxins and strigolactone production was also altered under different lights and might have a role in carotenoid metabolism. Gibberellins competed with carotenoids for the precursor geranylgeranyl diphosphate and were hindered by certain light characteristics, probably via DELLA-PIF4 signalling. <em>ERF021</em> and <em>MYB68</em> were negative regulators of carotenoid biosynthesis in maize sprouts. These findings provide new insights into the light-regulated mechanism and biofortification of carotenoids in maize sprouts.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666566222000569/pdfft?md5=5431d00f09e07c4a3fdfc39dbf310ad9&pid=1-s2.0-S2666566222000569-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666566222000569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566222000569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The modulation of light quality on carotenoids in maize (Zea mays L.) sprouts
The present study aimed to identify the regulatory mechanisms of red, blue, and white light on carotenoid biosynthesis in maize sprouts. Determinations of carotenoid, chlorophyll and phytohormone profiles, as well as relative gene expression, were explored. The results identified enhancement of carotenoid and chlorophyll production as well as gene expression. Most notably, the expression levels of CRY, HY5, and beta-carotene 3-hydroxylase genes peaked under blue light. Photomorphogene-related hormone, auxins and strigolactone production was also altered under different lights and might have a role in carotenoid metabolism. Gibberellins competed with carotenoids for the precursor geranylgeranyl diphosphate and were hindered by certain light characteristics, probably via DELLA-PIF4 signalling. ERF021 and MYB68 were negative regulators of carotenoid biosynthesis in maize sprouts. These findings provide new insights into the light-regulated mechanism and biofortification of carotenoids in maize sprouts.