{"title":"DGMP:从多组学基因组数据中通过连接DGCN和MLP来鉴定癌症驱动基因","authors":"Shao-Wu Zhang, Jing-Yu Xu, Tong Zhang","doi":"10.1016/j.gpb.2022.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Identification of cancer <strong>driver genes</strong> plays an important role in precision oncology research, which is helpful to understand cancer initiation and progression. However, most existing computational methods mainly used the protein–protein interaction (PPI) networks, or treated the directed <strong>gene regulatory networks</strong> (GRNs) as the undirected gene–gene association networks to identify the cancer driver genes, which will lose the unique structure regulatory information in the directed GRNs, and then affect the outcome of the cancer driver gene identification. Here, based on the multi-omics pan-cancer data (<em>i.e.</em>, gene expression, mutation, copy number variation, and DNA methylation), we propose a novel method (called DGMP) to identify cancer driver genes by jointing <strong>directed graph convolutional network</strong> (DGCN) and <strong>multilayer perceptron</strong> (MLP). DGMP learns the multi-omics features of genes as well as the topological structure features in GRN with the DGCN model and uses MLP to weigh more on gene features for mitigating the bias toward the graph topological features in the DGCN learning process. The results on three GRNs show that DGMP outperforms other existing state-of-the-art methods. The ablation experimental results on the DawnNet network indicate that introducing MLP into DGCN can offset the performance degradation of DGCN, and jointing MLP and DGCN can effectively improve the performance of identifying cancer driver genes. DGMP can identify not only the highly mutated cancer driver genes but also the driver genes harboring other kinds of alterations (<em>e.g.</em>, differential expression and aberrant DNA methylation) or genes involved in GRNs with other cancer genes. The source code of DGMP can be freely downloaded from <span>https://github.com/NWPU-903PR/DGMP</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"20 5","pages":"Pages 928-938"},"PeriodicalIF":11.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/17/4d/main.PMC10025764.pdf","citationCount":"4","resultStr":"{\"title\":\"DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data\",\"authors\":\"Shao-Wu Zhang, Jing-Yu Xu, Tong Zhang\",\"doi\":\"10.1016/j.gpb.2022.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Identification of cancer <strong>driver genes</strong> plays an important role in precision oncology research, which is helpful to understand cancer initiation and progression. However, most existing computational methods mainly used the protein–protein interaction (PPI) networks, or treated the directed <strong>gene regulatory networks</strong> (GRNs) as the undirected gene–gene association networks to identify the cancer driver genes, which will lose the unique structure regulatory information in the directed GRNs, and then affect the outcome of the cancer driver gene identification. Here, based on the multi-omics pan-cancer data (<em>i.e.</em>, gene expression, mutation, copy number variation, and DNA methylation), we propose a novel method (called DGMP) to identify cancer driver genes by jointing <strong>directed graph convolutional network</strong> (DGCN) and <strong>multilayer perceptron</strong> (MLP). DGMP learns the multi-omics features of genes as well as the topological structure features in GRN with the DGCN model and uses MLP to weigh more on gene features for mitigating the bias toward the graph topological features in the DGCN learning process. The results on three GRNs show that DGMP outperforms other existing state-of-the-art methods. The ablation experimental results on the DawnNet network indicate that introducing MLP into DGCN can offset the performance degradation of DGCN, and jointing MLP and DGCN can effectively improve the performance of identifying cancer driver genes. DGMP can identify not only the highly mutated cancer driver genes but also the driver genes harboring other kinds of alterations (<em>e.g.</em>, differential expression and aberrant DNA methylation) or genes involved in GRNs with other cancer genes. The source code of DGMP can be freely downloaded from <span>https://github.com/NWPU-903PR/DGMP</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"20 5\",\"pages\":\"Pages 928-938\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/17/4d/main.PMC10025764.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022922001450\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922001450","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data
Identification of cancer driver genes plays an important role in precision oncology research, which is helpful to understand cancer initiation and progression. However, most existing computational methods mainly used the protein–protein interaction (PPI) networks, or treated the directed gene regulatory networks (GRNs) as the undirected gene–gene association networks to identify the cancer driver genes, which will lose the unique structure regulatory information in the directed GRNs, and then affect the outcome of the cancer driver gene identification. Here, based on the multi-omics pan-cancer data (i.e., gene expression, mutation, copy number variation, and DNA methylation), we propose a novel method (called DGMP) to identify cancer driver genes by jointing directed graph convolutional network (DGCN) and multilayer perceptron (MLP). DGMP learns the multi-omics features of genes as well as the topological structure features in GRN with the DGCN model and uses MLP to weigh more on gene features for mitigating the bias toward the graph topological features in the DGCN learning process. The results on three GRNs show that DGMP outperforms other existing state-of-the-art methods. The ablation experimental results on the DawnNet network indicate that introducing MLP into DGCN can offset the performance degradation of DGCN, and jointing MLP and DGCN can effectively improve the performance of identifying cancer driver genes. DGMP can identify not only the highly mutated cancer driver genes but also the driver genes harboring other kinds of alterations (e.g., differential expression and aberrant DNA methylation) or genes involved in GRNs with other cancer genes. The source code of DGMP can be freely downloaded from https://github.com/NWPU-903PR/DGMP.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.