Yong-Hao Pua, Laura Tay, Ross Allan Clark, Julian Thumboo, Ee-Ling Tay, Shi-Min Mah, Pei-Yueng Lee, Yee-Sien Ng
{"title":"开发并验证基于身体虚弱表型指数的模型,以估算虚弱指数。","authors":"Yong-Hao Pua, Laura Tay, Ross Allan Clark, Julian Thumboo, Ee-Ling Tay, Shi-Min Mah, Pei-Yueng Lee, Yee-Sien Ng","doi":"10.1186/s41512-023-00143-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predictors-an approach that creates information loss and depends on the availability of population-derived cut-points. This study proposes an alternative approach to computing the PFP by developing and validating a model that uses PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor dichotomization.</p><p><strong>Methods: </strong>A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion predictors, was used to develop a model for FI (\"model-based PFP\"). Approximate leave-one-out (LOO) cross-validation was used to examine model overfitting.</p><p><strong>Results: </strong>The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive performance than the count-based PFP (LOO-R<sup>2</sup>, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) translated to improved classification agreement with the FI (Cohen's k<sub>w</sub>, 0.47 vs 0.36) and (ii) resulted primarily in a 23% (95%CI, 18-28%) net increase in FI-defined \"prefrail/frail\" participants correctly classified. The model-based PFP showed stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.</p><p><strong>Conclusion: </strong>The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP potentially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of this approach.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029224/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a physical frailty phenotype index-based model to estimate the frailty index.\",\"authors\":\"Yong-Hao Pua, Laura Tay, Ross Allan Clark, Julian Thumboo, Ee-Ling Tay, Shi-Min Mah, Pei-Yueng Lee, Yee-Sien Ng\",\"doi\":\"10.1186/s41512-023-00143-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predictors-an approach that creates information loss and depends on the availability of population-derived cut-points. This study proposes an alternative approach to computing the PFP by developing and validating a model that uses PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor dichotomization.</p><p><strong>Methods: </strong>A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion predictors, was used to develop a model for FI (\\\"model-based PFP\\\"). Approximate leave-one-out (LOO) cross-validation was used to examine model overfitting.</p><p><strong>Results: </strong>The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive performance than the count-based PFP (LOO-R<sup>2</sup>, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) translated to improved classification agreement with the FI (Cohen's k<sub>w</sub>, 0.47 vs 0.36) and (ii) resulted primarily in a 23% (95%CI, 18-28%) net increase in FI-defined \\\"prefrail/frail\\\" participants correctly classified. The model-based PFP showed stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.</p><p><strong>Conclusion: </strong>The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP potentially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of this approach.</p>\",\"PeriodicalId\":72800,\"journal\":{\"name\":\"Diagnostic and prognostic research\",\"volume\":\"7 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and prognostic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41512-023-00143-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-023-00143-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
背景:传统的基于计数的体质虚弱表型(PFP)对其标准预测因子进行了二分法处理--这种方法会造成信息损失,并依赖于人口衍生切点的可用性。本研究提出了一种计算 PFP 的替代方法,即开发并验证一个模型,利用 PFP 成分来预测社区老年人的虚弱指数(FI),而无需对预测因子进行二分法处理:方法:998 名居住在社区的老年人(平均 [SD] 68 [7] 岁)参与了这项前瞻性队列研究。参与者完成了一项多领域老年病筛查和一项体能评估,并据此计算出基于计数的PFP和36项FI。此外,还对一年的预期跌倒率和住院率进行了测量。贝叶斯贝塔回归分析考虑到非二分化的 PFP 标准预测因子的非线性效应,用于建立 FI 模型("基于模型的 PFP")。结果显示,基于模型的 PFP 具有良好的校准效果:结果:基于模型的 PFP 与 FI 显示出良好的校准性,其样本外预测性能优于基于计数的 PFP(LOO-R2,0.35 vs 0.22)。在临床方面,预测能力的提高(i)转化为与 FI 分类一致性的提高(Cohen's kw,0.47 vs 0.36),(ii)主要导致正确分类的 FI 定义的 "预危险/危险 "参与者净增加 23%(95%CI,18-28%)。在预测跌倒和住院方面,基于模型的PFP比基于计数的PFP显示出更强的预后性能:结论:与基于计数的预测模型相比,基于模型的预测模型能更准确地预测社区老年人的FI和临床结果。基于模型的预测因子不需要预测切点,因此可能会提高使用率和可行性。未来的验证研究应旨在获得有关这种方法益处的明确证据。
Development and validation of a physical frailty phenotype index-based model to estimate the frailty index.
Background: The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predictors-an approach that creates information loss and depends on the availability of population-derived cut-points. This study proposes an alternative approach to computing the PFP by developing and validating a model that uses PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor dichotomization.
Methods: A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion predictors, was used to develop a model for FI ("model-based PFP"). Approximate leave-one-out (LOO) cross-validation was used to examine model overfitting.
Results: The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive performance than the count-based PFP (LOO-R2, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) translated to improved classification agreement with the FI (Cohen's kw, 0.47 vs 0.36) and (ii) resulted primarily in a 23% (95%CI, 18-28%) net increase in FI-defined "prefrail/frail" participants correctly classified. The model-based PFP showed stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.
Conclusion: The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP potentially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of this approach.