开发并验证基于身体虚弱表型指数的模型,以估算虚弱指数。

Yong-Hao Pua, Laura Tay, Ross Allan Clark, Julian Thumboo, Ee-Ling Tay, Shi-Min Mah, Pei-Yueng Lee, Yee-Sien Ng
{"title":"开发并验证基于身体虚弱表型指数的模型,以估算虚弱指数。","authors":"Yong-Hao Pua, Laura Tay, Ross Allan Clark, Julian Thumboo, Ee-Ling Tay, Shi-Min Mah, Pei-Yueng Lee, Yee-Sien Ng","doi":"10.1186/s41512-023-00143-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predictors-an approach that creates information loss and depends on the availability of population-derived cut-points. This study proposes an alternative approach to computing the PFP by developing and validating a model that uses PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor dichotomization.</p><p><strong>Methods: </strong>A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion predictors, was used to develop a model for FI (\"model-based PFP\"). Approximate leave-one-out (LOO) cross-validation was used to examine model overfitting.</p><p><strong>Results: </strong>The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive performance than the count-based PFP (LOO-R<sup>2</sup>, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) translated to improved classification agreement with the FI (Cohen's k<sub>w</sub>, 0.47 vs 0.36) and (ii) resulted primarily in a 23% (95%CI, 18-28%) net increase in FI-defined \"prefrail/frail\" participants correctly classified. The model-based PFP showed stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.</p><p><strong>Conclusion: </strong>The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP potentially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of this approach.</p>","PeriodicalId":72800,"journal":{"name":"Diagnostic and prognostic research","volume":"7 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029224/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a physical frailty phenotype index-based model to estimate the frailty index.\",\"authors\":\"Yong-Hao Pua, Laura Tay, Ross Allan Clark, Julian Thumboo, Ee-Ling Tay, Shi-Min Mah, Pei-Yueng Lee, Yee-Sien Ng\",\"doi\":\"10.1186/s41512-023-00143-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predictors-an approach that creates information loss and depends on the availability of population-derived cut-points. This study proposes an alternative approach to computing the PFP by developing and validating a model that uses PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor dichotomization.</p><p><strong>Methods: </strong>A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion predictors, was used to develop a model for FI (\\\"model-based PFP\\\"). Approximate leave-one-out (LOO) cross-validation was used to examine model overfitting.</p><p><strong>Results: </strong>The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive performance than the count-based PFP (LOO-R<sup>2</sup>, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) translated to improved classification agreement with the FI (Cohen's k<sub>w</sub>, 0.47 vs 0.36) and (ii) resulted primarily in a 23% (95%CI, 18-28%) net increase in FI-defined \\\"prefrail/frail\\\" participants correctly classified. The model-based PFP showed stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.</p><p><strong>Conclusion: </strong>The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP potentially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of this approach.</p>\",\"PeriodicalId\":72800,\"journal\":{\"name\":\"Diagnostic and prognostic research\",\"volume\":\"7 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and prognostic research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41512-023-00143-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and prognostic research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41512-023-00143-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:传统的基于计数的体质虚弱表型(PFP)对其标准预测因子进行了二分法处理--这种方法会造成信息损失,并依赖于人口衍生切点的可用性。本研究提出了一种计算 PFP 的替代方法,即开发并验证一个模型,利用 PFP 成分来预测社区老年人的虚弱指数(FI),而无需对预测因子进行二分法处理:方法:998 名居住在社区的老年人(平均 [SD] 68 [7] 岁)参与了这项前瞻性队列研究。参与者完成了一项多领域老年病筛查和一项体能评估,并据此计算出基于计数的PFP和36项FI。此外,还对一年的预期跌倒率和住院率进行了测量。贝叶斯贝塔回归分析考虑到非二分化的 PFP 标准预测因子的非线性效应,用于建立 FI 模型("基于模型的 PFP")。结果显示,基于模型的 PFP 具有良好的校准效果:结果:基于模型的 PFP 与 FI 显示出良好的校准性,其样本外预测性能优于基于计数的 PFP(LOO-R2,0.35 vs 0.22)。在临床方面,预测能力的提高(i)转化为与 FI 分类一致性的提高(Cohen's kw,0.47 vs 0.36),(ii)主要导致正确分类的 FI 定义的 "预危险/危险 "参与者净增加 23%(95%CI,18-28%)。在预测跌倒和住院方面,基于模型的PFP比基于计数的PFP显示出更强的预后性能:结论:与基于计数的预测模型相比,基于模型的预测模型能更准确地预测社区老年人的FI和临床结果。基于模型的预测因子不需要预测切点,因此可能会提高使用率和可行性。未来的验证研究应旨在获得有关这种方法益处的明确证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and validation of a physical frailty phenotype index-based model to estimate the frailty index.

Background: The conventional count-based physical frailty phenotype (PFP) dichotomizes its criterion predictors-an approach that creates information loss and depends on the availability of population-derived cut-points. This study proposes an alternative approach to computing the PFP by developing and validating a model that uses PFP components to predict the frailty index (FI) in community-dwelling older adults, without the need for predictor dichotomization.

Methods: A sample of 998 community-dwelling older adults (mean [SD], 68 [7] years) participated in this prospective cohort study. Participants completed a multi-domain geriatric screen and a physical fitness assessment from which the count-based PFP and the 36-item FI were computed. One-year prospective falls and hospitalization rates were also measured. Bayesian beta regression analysis, allowing for nonlinear effects of the non-dichotomized PFP criterion predictors, was used to develop a model for FI ("model-based PFP"). Approximate leave-one-out (LOO) cross-validation was used to examine model overfitting.

Results: The model-based PFP showed good calibration with the FI, and it had better out-of-sample predictive performance than the count-based PFP (LOO-R2, 0.35 vs 0.22). In clinical terms, the improvement in prediction (i) translated to improved classification agreement with the FI (Cohen's kw, 0.47 vs 0.36) and (ii) resulted primarily in a 23% (95%CI, 18-28%) net increase in FI-defined "prefrail/frail" participants correctly classified. The model-based PFP showed stronger prognostic performance for predicting falls and hospitalization than did the count-based PFP.

Conclusion: The developed model-based PFP predicted FI and clinical outcomes more strongly than did the count-based PFP in community-dwelling older adults. By not requiring predictor cut-points, the model-based PFP potentially facilitates usage and feasibility. Future validation studies should aim to obtain clear evidence on the benefits of this approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Models for predicting risk of endometrial cancer: a systematic review. Risk prediction tools for pressure injury occurrence: an umbrella review of systematic reviews reporting model development and validation methods. Rehabilitation outcomes after comprehensive post-acute inpatient rehabilitation following moderate to severe acquired brain injury-study protocol for an overall prognosis study based on routinely collected health data. Validation of prognostic models predicting mortality or ICU admission in patients with COVID-19 in low- and middle-income countries: a global individual participant data meta-analysis. Reported prevalence and comparison of diagnostic approaches for Candida africana: a systematic review with meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1