基于边缘和直线检测的直接稀疏视觉里程测量点选择策略

Yinming Miao, Masahiro Yamaguchi
{"title":"基于边缘和直线检测的直接稀疏视觉里程测量点选择策略","authors":"Yinming Miao,&nbsp;Masahiro Yamaguchi","doi":"10.1016/j.gvc.2022.200051","DOIUrl":null,"url":null,"abstract":"<div><p>In most feature-based Visual Simultaneous Localization and Mapping systems, the pixels in a current image are compared with the correlative pixels in previous images, and the difference in the coordinates of pixels shows the movement of the camera. Different from the feature-based systems, direct methods operate on image intensity directly. Every pixel on the image or selected pixels with sufficient intensity gradient can be utilized. However, the noises in the images may affect the performance of those algorithms as the pixels are not adequately selected. In this work, we propose a new pixel selection method for a direct visual odometry system that focuses on the edge pixels. The edge pixels are usually more stable and repeatable than normal pixels. We apply the traditional edge detection method with adaptive parameters to get rough edge results. Then the edges are separated by gradient and shape. We use straightness, smoothness, length, and gradient magnitude to select the meaningful edges. We replace the pixel selection step of Direct Sparse Odometry and Direct Sparse Odometry with Loop Closure to present the evaluation on open datasets. The experimental results indicate that our method improves the performance of existing direct visual odometry systems in man-made scenes but is not suitable for pure natural scenes.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"6 ","pages":"Article 200051"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666629422000055/pdfft?md5=0d8257efc50aff81595f28fd075adf81&pid=1-s2.0-S2666629422000055-main.pdf","citationCount":"1","resultStr":"{\"title\":\"A point selection strategy with edge and line detection for Direct Sparse Visual Odometry\",\"authors\":\"Yinming Miao,&nbsp;Masahiro Yamaguchi\",\"doi\":\"10.1016/j.gvc.2022.200051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In most feature-based Visual Simultaneous Localization and Mapping systems, the pixels in a current image are compared with the correlative pixels in previous images, and the difference in the coordinates of pixels shows the movement of the camera. Different from the feature-based systems, direct methods operate on image intensity directly. Every pixel on the image or selected pixels with sufficient intensity gradient can be utilized. However, the noises in the images may affect the performance of those algorithms as the pixels are not adequately selected. In this work, we propose a new pixel selection method for a direct visual odometry system that focuses on the edge pixels. The edge pixels are usually more stable and repeatable than normal pixels. We apply the traditional edge detection method with adaptive parameters to get rough edge results. Then the edges are separated by gradient and shape. We use straightness, smoothness, length, and gradient magnitude to select the meaningful edges. We replace the pixel selection step of Direct Sparse Odometry and Direct Sparse Odometry with Loop Closure to present the evaluation on open datasets. The experimental results indicate that our method improves the performance of existing direct visual odometry systems in man-made scenes but is not suitable for pure natural scenes.</p></div>\",\"PeriodicalId\":100592,\"journal\":{\"name\":\"Graphics and Visual Computing\",\"volume\":\"6 \",\"pages\":\"Article 200051\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666629422000055/pdfft?md5=0d8257efc50aff81595f28fd075adf81&pid=1-s2.0-S2666629422000055-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphics and Visual Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666629422000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629422000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在大多数基于特征的视觉同步定位与映射系统中,当前图像中的像素与之前图像中的相关像素进行比较,像素坐标的差异表示相机的运动。与基于特征的系统不同,直接方法直接对图像强度进行操作。图像上的每个像素或具有足够强度梯度的选定像素都可以被利用。然而,图像中的噪声可能会影响这些算法的性能,因为像素没有充分选择。在这项工作中,我们提出了一种新的针对边缘像素的直接视觉里程计系统的像素选择方法。边缘像素通常比普通像素更稳定和可重复。我们采用传统的自适应参数边缘检测方法来获得粗糙边缘结果。然后用梯度和形状分离边缘。我们使用直线度、平滑度、长度和梯度大小来选择有意义的边缘。我们用闭环代替直接稀疏里程法和直接稀疏里程法的像素选择步骤,在开放数据集上进行评估。实验结果表明,该方法提高了现有直接视觉里程计系统在人工场景中的性能,但不适用于纯自然场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A point selection strategy with edge and line detection for Direct Sparse Visual Odometry

In most feature-based Visual Simultaneous Localization and Mapping systems, the pixels in a current image are compared with the correlative pixels in previous images, and the difference in the coordinates of pixels shows the movement of the camera. Different from the feature-based systems, direct methods operate on image intensity directly. Every pixel on the image or selected pixels with sufficient intensity gradient can be utilized. However, the noises in the images may affect the performance of those algorithms as the pixels are not adequately selected. In this work, we propose a new pixel selection method for a direct visual odometry system that focuses on the edge pixels. The edge pixels are usually more stable and repeatable than normal pixels. We apply the traditional edge detection method with adaptive parameters to get rough edge results. Then the edges are separated by gradient and shape. We use straightness, smoothness, length, and gradient magnitude to select the meaningful edges. We replace the pixel selection step of Direct Sparse Odometry and Direct Sparse Odometry with Loop Closure to present the evaluation on open datasets. The experimental results indicate that our method improves the performance of existing direct visual odometry systems in man-made scenes but is not suitable for pure natural scenes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Geometric models for plant leaf area estimation from 3D point clouds: A comparative study Efficient structuring of the latent space for controllable data reconstruction and compression Locally-guided neural denoising Editorial Note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1