Andrew Garmon , Vinay Ramakrishnaiah , Danny Perez
{"title":"任务级思辨科学应用的资源分配:使用平行轨迹拼接的概念证明","authors":"Andrew Garmon , Vinay Ramakrishnaiah , Danny Perez","doi":"10.1016/j.parco.2022.102936","DOIUrl":null,"url":null,"abstract":"<div><p><span>The constant increase in parallelism available on large-scale distributed computers poses major scalability challenges to many scientific applications. A common strategy to improve scalability is to express algorithms in terms of independent tasks that can be executed concurrently on a </span>runtime system<span>. In this manuscript, we consider a generalization of this approach where task-level speculation is allowed. In this context, a probability is attached to each task which corresponds to the likelihood that the output of the speculative task will be consumed as part of the larger calculation. We consider the problem of optimal resource allocation to each of the possible tasks so as to maximize the total expected computational throughput. The power of this approach is demonstrated by analyzing its application to Parallel Trajectory Splicing, a massively-parallel long-time-dynamics method for atomistic simulations.</span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"112 ","pages":"Article 102936"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource allocation for task-level speculative scientific applications: A proof of concept using Parallel Trajectory Splicing\",\"authors\":\"Andrew Garmon , Vinay Ramakrishnaiah , Danny Perez\",\"doi\":\"10.1016/j.parco.2022.102936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The constant increase in parallelism available on large-scale distributed computers poses major scalability challenges to many scientific applications. A common strategy to improve scalability is to express algorithms in terms of independent tasks that can be executed concurrently on a </span>runtime system<span>. In this manuscript, we consider a generalization of this approach where task-level speculation is allowed. In this context, a probability is attached to each task which corresponds to the likelihood that the output of the speculative task will be consumed as part of the larger calculation. We consider the problem of optimal resource allocation to each of the possible tasks so as to maximize the total expected computational throughput. The power of this approach is demonstrated by analyzing its application to Parallel Trajectory Splicing, a massively-parallel long-time-dynamics method for atomistic simulations.</span></p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"112 \",\"pages\":\"Article 102936\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000369\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000369","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Resource allocation for task-level speculative scientific applications: A proof of concept using Parallel Trajectory Splicing
The constant increase in parallelism available on large-scale distributed computers poses major scalability challenges to many scientific applications. A common strategy to improve scalability is to express algorithms in terms of independent tasks that can be executed concurrently on a runtime system. In this manuscript, we consider a generalization of this approach where task-level speculation is allowed. In this context, a probability is attached to each task which corresponds to the likelihood that the output of the speculative task will be consumed as part of the larger calculation. We consider the problem of optimal resource allocation to each of the possible tasks so as to maximize the total expected computational throughput. The power of this approach is demonstrated by analyzing its application to Parallel Trajectory Splicing, a massively-parallel long-time-dynamics method for atomistic simulations.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications