{"title":"基于种群遗传结构的阶段结构植物群体遗传多样性时间动态建模","authors":"Yoichi Tsuzuki, Takenori Takada, Masashi Ohara","doi":"10.1016/j.tpb.2022.11.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Predicting temporal dynamics of genetic diversity<span> is important for assessing long-term population persistence. In stage-structured populations, especially in perennial<span> plant species, genetic diversity is often compared among life history stages, such as seedlings, juveniles, and flowerings, using neutral genetic markers. The comparison among stages is sometimes referred to as demographic genetic structure, which has been regarded as a proxy of potential genetic changes because individuals in mature stages will die and be replaced by those in more immature stages over the course of time. However, due to the lack of theoretical examination, the basic property of the stage-wise genetic diversity remained unclear. We developed a matrix model which was made up of difference equations of the probability of non-identical-by-descent of each life history stage at a neutral locus to describe the dynamics and the inter-stage differences of genetic diversity in stage-structured plant populations. Based on the model, we formulated demographic genetic structure as well as the annual change rate of the probability of non-identical-by-descent (denoted as </span></span></span><span><math><mi>η</mi></math></span>). We checked if theoretical expectations on demographic genetic structure and <span><math><mi>η</mi></math></span> obtained from our model agreed with computational results of stochastic simulation using randomly generated 3,000 life histories. We then examined the relationships of demographic genetic structure with effective population size <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>, which is the determinants of diversity loss per generation time. Theoretical expectations on <span><math><mi>η</mi></math></span> and demographic genetic structure fitted well to the results of stochastic simulation, supporting the validity of our model. Demographic genetic structure varied independently of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> and <span><math><mi>η</mi></math></span>, while having a strong correlation with stable stage distribution: genetic diversity was lower in stages with fewer individuals. Our results indicate that demographic genetic structure strongly reflects stable stage distribution, rather than temporal genetic dynamics, and that inferring future genetic diversity solely from demographic genetic structure would be misleading. Instead of demographic genetic structure, we propose <span><math><mi>η</mi></math></span> as an useful tool to predict genetic diversity at the same time scale as population dynamics (i.e., per year), facilitating evaluation on population viability from a genetic point of view.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling temporal dynamics of genetic diversity in stage-structured plant populations with reference to demographic genetic structure\",\"authors\":\"Yoichi Tsuzuki, Takenori Takada, Masashi Ohara\",\"doi\":\"10.1016/j.tpb.2022.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Predicting temporal dynamics of genetic diversity<span> is important for assessing long-term population persistence. In stage-structured populations, especially in perennial<span> plant species, genetic diversity is often compared among life history stages, such as seedlings, juveniles, and flowerings, using neutral genetic markers. The comparison among stages is sometimes referred to as demographic genetic structure, which has been regarded as a proxy of potential genetic changes because individuals in mature stages will die and be replaced by those in more immature stages over the course of time. However, due to the lack of theoretical examination, the basic property of the stage-wise genetic diversity remained unclear. We developed a matrix model which was made up of difference equations of the probability of non-identical-by-descent of each life history stage at a neutral locus to describe the dynamics and the inter-stage differences of genetic diversity in stage-structured plant populations. Based on the model, we formulated demographic genetic structure as well as the annual change rate of the probability of non-identical-by-descent (denoted as </span></span></span><span><math><mi>η</mi></math></span>). We checked if theoretical expectations on demographic genetic structure and <span><math><mi>η</mi></math></span> obtained from our model agreed with computational results of stochastic simulation using randomly generated 3,000 life histories. We then examined the relationships of demographic genetic structure with effective population size <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>, which is the determinants of diversity loss per generation time. Theoretical expectations on <span><math><mi>η</mi></math></span> and demographic genetic structure fitted well to the results of stochastic simulation, supporting the validity of our model. Demographic genetic structure varied independently of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> and <span><math><mi>η</mi></math></span>, while having a strong correlation with stable stage distribution: genetic diversity was lower in stages with fewer individuals. Our results indicate that demographic genetic structure strongly reflects stable stage distribution, rather than temporal genetic dynamics, and that inferring future genetic diversity solely from demographic genetic structure would be misleading. Instead of demographic genetic structure, we propose <span><math><mi>η</mi></math></span> as an useful tool to predict genetic diversity at the same time scale as population dynamics (i.e., per year), facilitating evaluation on population viability from a genetic point of view.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580922000697\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580922000697","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling temporal dynamics of genetic diversity in stage-structured plant populations with reference to demographic genetic structure
Predicting temporal dynamics of genetic diversity is important for assessing long-term population persistence. In stage-structured populations, especially in perennial plant species, genetic diversity is often compared among life history stages, such as seedlings, juveniles, and flowerings, using neutral genetic markers. The comparison among stages is sometimes referred to as demographic genetic structure, which has been regarded as a proxy of potential genetic changes because individuals in mature stages will die and be replaced by those in more immature stages over the course of time. However, due to the lack of theoretical examination, the basic property of the stage-wise genetic diversity remained unclear. We developed a matrix model which was made up of difference equations of the probability of non-identical-by-descent of each life history stage at a neutral locus to describe the dynamics and the inter-stage differences of genetic diversity in stage-structured plant populations. Based on the model, we formulated demographic genetic structure as well as the annual change rate of the probability of non-identical-by-descent (denoted as ). We checked if theoretical expectations on demographic genetic structure and obtained from our model agreed with computational results of stochastic simulation using randomly generated 3,000 life histories. We then examined the relationships of demographic genetic structure with effective population size , which is the determinants of diversity loss per generation time. Theoretical expectations on and demographic genetic structure fitted well to the results of stochastic simulation, supporting the validity of our model. Demographic genetic structure varied independently of and , while having a strong correlation with stable stage distribution: genetic diversity was lower in stages with fewer individuals. Our results indicate that demographic genetic structure strongly reflects stable stage distribution, rather than temporal genetic dynamics, and that inferring future genetic diversity solely from demographic genetic structure would be misleading. Instead of demographic genetic structure, we propose as an useful tool to predict genetic diversity at the same time scale as population dynamics (i.e., per year), facilitating evaluation on population viability from a genetic point of view.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.