地震标记数据扩展使用变分自编码器

Kunhong Li , Song Chen , Guangmin Hu Ph.D
{"title":"地震标记数据扩展使用变分自编码器","authors":"Kunhong Li ,&nbsp;Song Chen ,&nbsp;Guangmin Hu Ph.D","doi":"10.1016/j.aiig.2020.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Supervised machine learning algorithms have been widely used in seismic exploration processing, but the lack of labeled examples complicates its application. Therefore, we propose a seismic labeled data expansion method based on deep variational Autoencoders (VAE), which are made of neural networks and contains two parts-Encoder and Decoder. Lack of training samples leads to overfitting of the network. We training the VAE with whole seismic data, which is a data-driven process and greatly alleviates the risk of overfitting. The Encoder captures the ability to map the seismic waveform <span><math><mrow><mi>Y</mi></mrow></math></span> to latent deep features <span><math><mrow><mi>z</mi></mrow></math></span>, and the Decoder captures the ability to reconstruct high-dimensional waveform <span><math><mrow><mover><mi>Y</mi><mo>ˆ</mo></mover></mrow></math></span> from latent deep features <span><math><mrow><mi>z</mi></mrow></math></span>. Later, we put the labeled seismic data into Encoders and get the latent deep features. We can easily use gaussian mixture model to fit the deep feature distribution of each class labeled data. We resample a mass of expansion deep features <span><math><mrow><msup><mi>z</mi><mo>∗</mo></msup></mrow></math></span> according to the Gaussian mixture model, and put the expansion deep features into the decoder to generate expansion seismic data. The experiments in synthetic and real data show that our method alleviates the problem of lacking labeled seismic data for supervised seismic facies analysis.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"1 ","pages":"Pages 24-30"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiig.2020.12.002","citationCount":"6","resultStr":"{\"title\":\"Seismic labeled data expansion using variational autoencoders\",\"authors\":\"Kunhong Li ,&nbsp;Song Chen ,&nbsp;Guangmin Hu Ph.D\",\"doi\":\"10.1016/j.aiig.2020.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supervised machine learning algorithms have been widely used in seismic exploration processing, but the lack of labeled examples complicates its application. Therefore, we propose a seismic labeled data expansion method based on deep variational Autoencoders (VAE), which are made of neural networks and contains two parts-Encoder and Decoder. Lack of training samples leads to overfitting of the network. We training the VAE with whole seismic data, which is a data-driven process and greatly alleviates the risk of overfitting. The Encoder captures the ability to map the seismic waveform <span><math><mrow><mi>Y</mi></mrow></math></span> to latent deep features <span><math><mrow><mi>z</mi></mrow></math></span>, and the Decoder captures the ability to reconstruct high-dimensional waveform <span><math><mrow><mover><mi>Y</mi><mo>ˆ</mo></mover></mrow></math></span> from latent deep features <span><math><mrow><mi>z</mi></mrow></math></span>. Later, we put the labeled seismic data into Encoders and get the latent deep features. We can easily use gaussian mixture model to fit the deep feature distribution of each class labeled data. We resample a mass of expansion deep features <span><math><mrow><msup><mi>z</mi><mo>∗</mo></msup></mrow></math></span> according to the Gaussian mixture model, and put the expansion deep features into the decoder to generate expansion seismic data. The experiments in synthetic and real data show that our method alleviates the problem of lacking labeled seismic data for supervised seismic facies analysis.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"1 \",\"pages\":\"Pages 24-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aiig.2020.12.002\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544120300034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544120300034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

有监督机器学习算法在地震勘探处理中得到了广泛的应用,但缺乏标记样例使其应用变得复杂。为此,我们提出了一种基于深度变分自编码器(VAE)的地震标记数据扩展方法,该方法由神经网络构成,包含编码器和解码器两部分。训练样本的缺乏会导致网络的过拟合。我们用整个地震数据来训练VAE,这是一个数据驱动的过程,大大降低了过拟合的风险。Encoder捕获了将地震波形Y映射到潜在深度特征z的能力,Decoder捕获了从潜在深度特征z重构高维波形Y -的能力。随后,我们将标记的地震数据放入Encoder中并获得潜在深度特征。我们可以很容易地使用高斯混合模型来拟合每一类标记数据的深度特征分布。我们根据高斯混合模型重新采样大量的扩展深度特征z *,并将扩展深度特征放入解码器中生成扩展地震数据。合成数据和实际数据的实验表明,该方法解决了监督地震相分析缺乏标记地震数据的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic labeled data expansion using variational autoencoders

Supervised machine learning algorithms have been widely used in seismic exploration processing, but the lack of labeled examples complicates its application. Therefore, we propose a seismic labeled data expansion method based on deep variational Autoencoders (VAE), which are made of neural networks and contains two parts-Encoder and Decoder. Lack of training samples leads to overfitting of the network. We training the VAE with whole seismic data, which is a data-driven process and greatly alleviates the risk of overfitting. The Encoder captures the ability to map the seismic waveform Y to latent deep features z, and the Decoder captures the ability to reconstruct high-dimensional waveform Yˆ from latent deep features z. Later, we put the labeled seismic data into Encoders and get the latent deep features. We can easily use gaussian mixture model to fit the deep feature distribution of each class labeled data. We resample a mass of expansion deep features z according to the Gaussian mixture model, and put the expansion deep features into the decoder to generate expansion seismic data. The experiments in synthetic and real data show that our method alleviates the problem of lacking labeled seismic data for supervised seismic facies analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1