ShakeDaDO:意大利地震建筑物损坏和地震地图参数的数据集合

Licia Faenza , Alberto Michelini , Helen Crowley , Barbara Borzi , Marta Faravelli
{"title":"ShakeDaDO:意大利地震建筑物损坏和地震地图参数的数据集合","authors":"Licia Faenza ,&nbsp;Alberto Michelini ,&nbsp;Helen Crowley ,&nbsp;Barbara Borzi ,&nbsp;Marta Faravelli","doi":"10.1016/j.aiig.2021.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a new data collection that combines information about earthquake damage with seismic shaking. Starting from the Da.D.O. database, which provides information on the damage of individual buildings subjected to sequences of past earthquakes in Italy, we have generated ShakeMaps for all the events with magnitude greater than 5.0 that have contributed to these sequences. The sequences under examination are those of Irpinia 1980, Umbria Marche 1997, Pollino 1998, Molise 2002, L’Aquila 2009 and Emilia 2012. In this way, we were able to combine, for a total of the 117,695 buildings, the engineering parameters included in Da.D.O., but revised and reprocessed in this application, and the ground shaking data for six different variables (namely, intensity in MCS scale, PGA, PGV, SA at 0.3s, 1.0s and 3.0s). The potential applications of this data collection are innumerable: from recalibrating fragility curves to training machine learning models to quantifying earthquake damage. This data collection will be made available within Da.D.O., a platform of the Italian Department of Civil Protection, developed by EUCENTRE.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"1 ","pages":"Pages 36-51"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiig.2021.01.002","citationCount":"5","resultStr":"{\"title\":\"ShakeDaDO: A data collection combining earthquake building damage and ShakeMap parameters for Italy\",\"authors\":\"Licia Faenza ,&nbsp;Alberto Michelini ,&nbsp;Helen Crowley ,&nbsp;Barbara Borzi ,&nbsp;Marta Faravelli\",\"doi\":\"10.1016/j.aiig.2021.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present a new data collection that combines information about earthquake damage with seismic shaking. Starting from the Da.D.O. database, which provides information on the damage of individual buildings subjected to sequences of past earthquakes in Italy, we have generated ShakeMaps for all the events with magnitude greater than 5.0 that have contributed to these sequences. The sequences under examination are those of Irpinia 1980, Umbria Marche 1997, Pollino 1998, Molise 2002, L’Aquila 2009 and Emilia 2012. In this way, we were able to combine, for a total of the 117,695 buildings, the engineering parameters included in Da.D.O., but revised and reprocessed in this application, and the ground shaking data for six different variables (namely, intensity in MCS scale, PGA, PGV, SA at 0.3s, 1.0s and 3.0s). The potential applications of this data collection are innumerable: from recalibrating fragility curves to training machine learning models to quantifying earthquake damage. This data collection will be made available within Da.D.O., a platform of the Italian Department of Civil Protection, developed by EUCENTRE.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"1 \",\"pages\":\"Pages 36-51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.aiig.2021.01.002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544121000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544121000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在这篇文章中,我们提出了一个新的数据集,结合了地震破坏和地震震动的信息。从d.d.o.开始。数据库,该数据库提供了意大利过去地震序列中单个建筑物的损坏信息,我们为所有大于5.0级的事件生成了震动地图,这些事件导致了这些序列。研究的序列是1980年的Irpinia, 1997年的Umbria Marche, 1998年的Pollino, 2002年的Molise, 2009年的L 'Aquila和2012年的Emilia。通过这种方式,我们能够将总共117,695座建筑的工程参数包含在Da.D.O中。,但在本应用中进行了修改和重新处理,以及六个不同变量的地震动数据(即0.3s、1.0s和3.0s时的MCS强度、PGA、PGV、SA)。这些数据收集的潜在应用数不胜数:从重新校准脆弱性曲线到训练机器学习模型,再到量化地震破坏。该数据收集将在da . do内提供。,意大利民防部门的一个平台,由EUCENTRE开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ShakeDaDO: A data collection combining earthquake building damage and ShakeMap parameters for Italy

In this article, we present a new data collection that combines information about earthquake damage with seismic shaking. Starting from the Da.D.O. database, which provides information on the damage of individual buildings subjected to sequences of past earthquakes in Italy, we have generated ShakeMaps for all the events with magnitude greater than 5.0 that have contributed to these sequences. The sequences under examination are those of Irpinia 1980, Umbria Marche 1997, Pollino 1998, Molise 2002, L’Aquila 2009 and Emilia 2012. In this way, we were able to combine, for a total of the 117,695 buildings, the engineering parameters included in Da.D.O., but revised and reprocessed in this application, and the ground shaking data for six different variables (namely, intensity in MCS scale, PGA, PGV, SA at 0.3s, 1.0s and 3.0s). The potential applications of this data collection are innumerable: from recalibrating fragility curves to training machine learning models to quantifying earthquake damage. This data collection will be made available within Da.D.O., a platform of the Italian Department of Civil Protection, developed by EUCENTRE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1