Miguel Ortiz-Barrios , Sebastián Arias-Fonseca , Alessio Ishizaka , Maria Barbati , Betty Avendaño-Collante , Eduardo Navarro-Jiménez
{"title":"新冠肺炎大流行期间重症监护室容量管理的人工智能和离散事件模拟:一项案例研究","authors":"Miguel Ortiz-Barrios , Sebastián Arias-Fonseca , Alessio Ishizaka , Maria Barbati , Betty Avendaño-Collante , Eduardo Navarro-Jiménez","doi":"10.1016/j.jbusres.2023.113806","DOIUrl":null,"url":null,"abstract":"<div><p>The Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the imbalances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19. The proposed approach was validated in a Spanish hospital chain where we initially identified the predictors of ICU admission in Covid-19 patients. Second, we applied Random Forest (RF) to predict ICU admission likelihood using patient data collected in the Emergency Department (ED). Finally, we included the RF outcomes in a DES model to assist decision-makers in evaluating new ICU bed configurations responding to the patient transfer expected from downstream services. The results evidenced that the median bed waiting time declined between 32.42 and 48.03 min after intervention.</p></div>","PeriodicalId":15123,"journal":{"name":"Journal of Business Research","volume":"160 ","pages":"Article 113806"},"PeriodicalIF":10.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981538/pdf/","citationCount":"3","resultStr":"{\"title\":\"Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study\",\"authors\":\"Miguel Ortiz-Barrios , Sebastián Arias-Fonseca , Alessio Ishizaka , Maria Barbati , Betty Avendaño-Collante , Eduardo Navarro-Jiménez\",\"doi\":\"10.1016/j.jbusres.2023.113806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the imbalances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19. The proposed approach was validated in a Spanish hospital chain where we initially identified the predictors of ICU admission in Covid-19 patients. Second, we applied Random Forest (RF) to predict ICU admission likelihood using patient data collected in the Emergency Department (ED). Finally, we included the RF outcomes in a DES model to assist decision-makers in evaluating new ICU bed configurations responding to the patient transfer expected from downstream services. The results evidenced that the median bed waiting time declined between 32.42 and 48.03 min after intervention.</p></div>\",\"PeriodicalId\":15123,\"journal\":{\"name\":\"Journal of Business Research\",\"volume\":\"160 \",\"pages\":\"Article 113806\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981538/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0148296323001649\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0148296323001649","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study
The Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the imbalances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19. The proposed approach was validated in a Spanish hospital chain where we initially identified the predictors of ICU admission in Covid-19 patients. Second, we applied Random Forest (RF) to predict ICU admission likelihood using patient data collected in the Emergency Department (ED). Finally, we included the RF outcomes in a DES model to assist decision-makers in evaluating new ICU bed configurations responding to the patient transfer expected from downstream services. The results evidenced that the median bed waiting time declined between 32.42 and 48.03 min after intervention.
期刊介绍:
The Journal of Business Research aims to publish research that is rigorous, relevant, and potentially impactful. It examines a wide variety of business decision contexts, processes, and activities, developing insights that are meaningful for theory, practice, and/or society at large. The research is intended to generate meaningful debates in academia and practice, that are thought provoking and have the potential to make a difference to conceptual thinking and/or practice. The Journal is published for a broad range of stakeholders, including scholars, researchers, executives, and policy makers. It aids the application of its research to practical situations and theoretical findings to the reality of the business world as well as to society. The Journal is abstracted and indexed in several databases, including Social Sciences Citation Index, ANBAR, Current Contents, Management Contents, Management Literature in Brief, PsycINFO, Information Service, RePEc, Academic Journal Guide, ABI/Inform, INSPEC, etc.