{"title":"[2 + 2]光环加成反应作为机械化学研磨监测固态分子运动的工具","authors":"Jagadese J. Vittal","doi":"10.1016/j.jphotochemrev.2023.100636","DOIUrl":null,"url":null,"abstract":"<div><p><span>Mechanochemistry, a burgeoning field in green chemistry, has been utilized frequently to synthesize various organic molecules, metal complexes, </span>coordination polymers<span><span><span> (CPs) and metal-organic frameworks (MOFs) in the solid state from the reactants with very little or no solvent. These mechanical grinding reactions also resulted in successful isolation of materials that are inaccessible otherwise from solution. On the contrary, single crystal X-ray </span>crystallographic technique is routinely used to study the solid-state structural transformations driven by thermal and </span>photochemical methods<span>. In the absence of single crystals, [2 + 2] photocycloaddition reactions can easily be monitored by NMR spectroscopy along with other suitable physical and analytical techniques. During mechanical grinding, several structural changes have been found to take place with the loss of single crystalline nature. Here from our personal perspective, we reviewed how this [2 + 2] cycloaddition reactions have been used effectively to monitor the structural changes induced by mechanochemical grinding. These structural transformations are caused by the pedal motion of olefin<span> bonds, conformational changes of molecular fragments, movements of molecules, change in the composition by absorbing water from the atmosphere, anisotropic expansion of volume, rotation of helical coordination polymers, dimensionality change, loss of coordinating and lattice solvents and catalytic role of template molecules on the [2 + 2] photocycloaddition reactivity.</span></span></span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"57 ","pages":"Article 100636"},"PeriodicalIF":12.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[2 + 2] photocycloaddition reaction as a tool to monitor the molecular motions in the solid state by mechanochemical grinding\",\"authors\":\"Jagadese J. Vittal\",\"doi\":\"10.1016/j.jphotochemrev.2023.100636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Mechanochemistry, a burgeoning field in green chemistry, has been utilized frequently to synthesize various organic molecules, metal complexes, </span>coordination polymers<span><span><span> (CPs) and metal-organic frameworks (MOFs) in the solid state from the reactants with very little or no solvent. These mechanical grinding reactions also resulted in successful isolation of materials that are inaccessible otherwise from solution. On the contrary, single crystal X-ray </span>crystallographic technique is routinely used to study the solid-state structural transformations driven by thermal and </span>photochemical methods<span>. In the absence of single crystals, [2 + 2] photocycloaddition reactions can easily be monitored by NMR spectroscopy along with other suitable physical and analytical techniques. During mechanical grinding, several structural changes have been found to take place with the loss of single crystalline nature. Here from our personal perspective, we reviewed how this [2 + 2] cycloaddition reactions have been used effectively to monitor the structural changes induced by mechanochemical grinding. These structural transformations are caused by the pedal motion of olefin<span> bonds, conformational changes of molecular fragments, movements of molecules, change in the composition by absorbing water from the atmosphere, anisotropic expansion of volume, rotation of helical coordination polymers, dimensionality change, loss of coordinating and lattice solvents and catalytic role of template molecules on the [2 + 2] photocycloaddition reactivity.</span></span></span></p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"57 \",\"pages\":\"Article 100636\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556723000679\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000679","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
[2 + 2] photocycloaddition reaction as a tool to monitor the molecular motions in the solid state by mechanochemical grinding
Mechanochemistry, a burgeoning field in green chemistry, has been utilized frequently to synthesize various organic molecules, metal complexes, coordination polymers (CPs) and metal-organic frameworks (MOFs) in the solid state from the reactants with very little or no solvent. These mechanical grinding reactions also resulted in successful isolation of materials that are inaccessible otherwise from solution. On the contrary, single crystal X-ray crystallographic technique is routinely used to study the solid-state structural transformations driven by thermal and photochemical methods. In the absence of single crystals, [2 + 2] photocycloaddition reactions can easily be monitored by NMR spectroscopy along with other suitable physical and analytical techniques. During mechanical grinding, several structural changes have been found to take place with the loss of single crystalline nature. Here from our personal perspective, we reviewed how this [2 + 2] cycloaddition reactions have been used effectively to monitor the structural changes induced by mechanochemical grinding. These structural transformations are caused by the pedal motion of olefin bonds, conformational changes of molecular fragments, movements of molecules, change in the composition by absorbing water from the atmosphere, anisotropic expansion of volume, rotation of helical coordination polymers, dimensionality change, loss of coordinating and lattice solvents and catalytic role of template molecules on the [2 + 2] photocycloaddition reactivity.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.