Kyeongjun Seo, Thomas F Edgar, Mark A Stadtherr, Michael Baldea
{"title":"离子液体溶剂碳捕获工艺的设计与优化","authors":"Kyeongjun Seo, Thomas F Edgar, Mark A Stadtherr, Michael Baldea","doi":"10.1016/j.coche.2023.100978","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing carbon dioxide<span> emissions and the resulting global warming are a critical environmental concern. Ionic liquids (ILs) have recently gained attention as promising absorbents for carbon capture due to their favorable chemical and physical properties. Consequently, there is a need to develop process modeling and mathematical optimization techniques for the design and operation of IL-based carbon capture processes to identify optimal design and operation. This review presents recent advances in modeling and optimization of carbon capture plants using ILs. We focus on flowsheet simulation, nonlinear dynamics, variations in plant load and energy prices, and multiscale design.</span></p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"42 ","pages":"Article 100978"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and optimization of carbon capture processes using ionic liquid solvents\",\"authors\":\"Kyeongjun Seo, Thomas F Edgar, Mark A Stadtherr, Michael Baldea\",\"doi\":\"10.1016/j.coche.2023.100978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing carbon dioxide<span> emissions and the resulting global warming are a critical environmental concern. Ionic liquids (ILs) have recently gained attention as promising absorbents for carbon capture due to their favorable chemical and physical properties. Consequently, there is a need to develop process modeling and mathematical optimization techniques for the design and operation of IL-based carbon capture processes to identify optimal design and operation. This review presents recent advances in modeling and optimization of carbon capture plants using ILs. We focus on flowsheet simulation, nonlinear dynamics, variations in plant load and energy prices, and multiscale design.</span></p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"42 \",\"pages\":\"Article 100978\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000825\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000825","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Design and optimization of carbon capture processes using ionic liquid solvents
Increasing carbon dioxide emissions and the resulting global warming are a critical environmental concern. Ionic liquids (ILs) have recently gained attention as promising absorbents for carbon capture due to their favorable chemical and physical properties. Consequently, there is a need to develop process modeling and mathematical optimization techniques for the design and operation of IL-based carbon capture processes to identify optimal design and operation. This review presents recent advances in modeling and optimization of carbon capture plants using ILs. We focus on flowsheet simulation, nonlinear dynamics, variations in plant load and energy prices, and multiscale design.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.